
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012

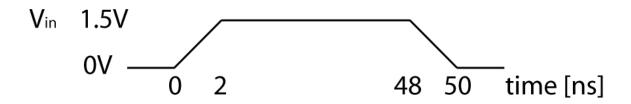
Microelectronic Devices and Circuits Spring 2007 March 16, 2007 - Homework #4 Due - March 23, 2007

Problem 1

Consider the CMOS inverter pictured below. Take channel length modulation into account.

Parameter	NMOS	PMOS
V_{TO}	0.5 V	-0.5 V
μ	$220 \text{ cm}^2/\text{Vs}$	110 cm ² /Vs
λ	0.1 V^{-1}	0.1 V^{-1}
Tox	15 nm	15 nm

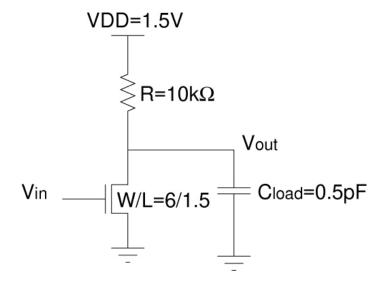
• Dimensions of W and L are in μm


- a) Calculate V_M, the voltage midpoint.
- b) Calculate A_V , the voltage gain at $V_{in}=V_M$.
- c) Calculate N_{ML} and N_{MH} , the noise margin low and noise margin high.
- d) Calculate t_{PHL} and t_{PLH}, the propagation delay from high-to-low and propagation delay from low-to-high.

Problem 2

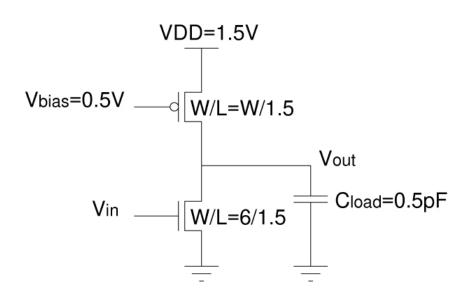
We will now use the following SPICE model and compare our hand calculations from Problem 1 with simulated results.

```
.MODEL N15 NMOS LEVEL=1 VT0=0.5 TOX=1.5e-8 U0=220 LAMBDA=1.0e-1 +GAMMA=0.6 CJ=1e-4 CJSW=5e-10 PB=0.95 
.MODEL P15 PMOS LEVEL=1 VT0=-0.5 TOX=1.5e-8 U0=110 LAMBDA=1.0e-1 +GAMMA=0.6 CJ=3e-4 CJSW=3.5e-10 PB=0.9
```


- a) Use the DC sweep on the input voltage to simulate transfer characteristics using SPICE. Compare V_M , A_V , N_{ML} , N_{MH} , with the calculated results.
- b) Use the Pulse input to simulate an input waveform shown below using SPICE. Compare t_{PHL} and t_{PLH} with your hand calculations.

Problem 3

Consider the circuit below, which consists of an NMOS device and resistor load. Disregard channel length modulation for this problem.


- a) Calculate V_M , V_{OH} , V_{OL} . Remember, for hand calculations we assume $V_{OH} = V_{MAX}$, and $V_{OL} = V_{MIN}$.
- b) Calculate the voltage gain of this circuit, when $V_{in}=V_{M}$.

Problem 4

Consider the circuit below, which consists of an NMOS device and PMOS current source load. *Do not* neglect channel length modulation.

- a) Calculate the width of the PMOS device so its saturation current is 50µA.
- b) Calculate V_M , V_{OH} , V_{OL} . Remember, for hand calculations we assume $V_{OH}=V_{MAX}$, and $V_{OL}=V_{MIN}$.
- c) Calculate the voltage gain of this circuit, when V_{in}=V_M.

