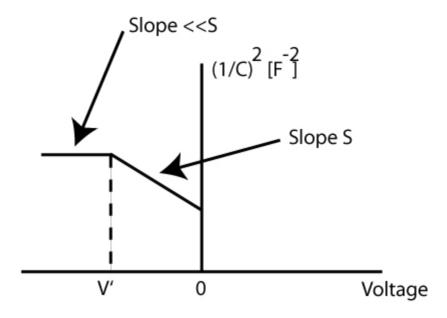

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012


Microelectronic Devices and Circuits Spring 2007 February 28, 2007 - Homework #3 Due - March 9, 2007

Problem 1

The device drawn below is biased as shown, and a capacitance-voltage (C-V) measurement is taken. The area of the device is 10^{-6} cm². Assume the electrostatic potential in the n+ silicon region, ϕ_{n+} =550mV.

A plot of $(1/C)^2$ as a function of the DC voltage, V, where C is the capacitance is shown below. The device is in reverse bias. The slope, S, is -4.8 * 10^{26} F⁻² V⁻¹. NOTE: The polarity of the DC source is now shown correctly.

- a) Derive an expression for the doping, N_a , in the p-type region in terms of the slope S, shown in the plot, and other known parameters (e.g. constants like q ϵ_{Si} , the device area).
- b) Assume now that N_a is 10^{16} cm⁻³. Estimate the DC voltage V' where the slope of the plot of $(1/C)^2$ vs. voltage changes, as seen in the graph.

a)
$$C_{j}(V) = \frac{C_{jo} \times A}{\sqrt{1 - V/\phi_{B}}} \longrightarrow \left(\frac{1}{C_{j}}\right)^{2} = \frac{1 - V/\phi_{B}}{C_{jo}^{2} \times A^{2}} = \frac{\phi_{B} - V}{\phi_{B}^{2} \times C_{jo}^{2} \times A^{2}}$$

$$Slope, S = \frac{-1}{\phi_{B}^{2} \times C_{jo}^{2} \times A^{2}} \qquad C_{jo} = \sqrt{\frac{q \times \varepsilon_{Si} \times N_{a}}{2 \times \phi_{B}}}$$

$$N_{a} = \frac{-2}{A^{2} \times q \times \varepsilon_{Si} \times S}$$

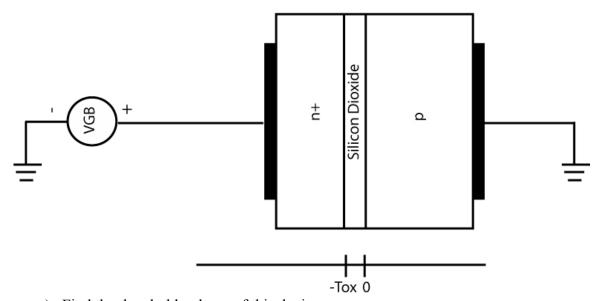
Plugging in the numbers, we find N_a =2.5 x 10^{16} cm⁻³. The numerical answer is not necessary.

b) The slope will change when the 1 micron wide p-type region is completely depleted, i.e., $x_d=1$ micron.

$$x_d(V) = x_{dO} \times \sqrt{1 - V/\phi_B}$$

$$\phi_B = \phi_{n+} - \phi_p = .55 - (-.36) = 0.91V$$

$$x_{dO} = \sqrt{\frac{2 \times \varepsilon_{Si} \times \phi_B}{q \times N_a}} = 3.44 \times 10^{-5} cm$$


$$\frac{x_d}{x_{dO}} = \sqrt{1 - \frac{V'}{\phi_B}} = \frac{10^{-4} cm}{3.44 \times 10^{-5} cm} = 2.91$$

Solving for V`, we find

$$V' = -6.8V$$

Problem 2

A metal-oxide-semiconductor (MOS) device is pictured below. T_{ox} is 15nm. Assume ϕ_{n+} =0.55V, and that N_a in the p region is 10^{17} cm⁻³.

- a) Find the threshold voltage of this device.
- b) What applied bias leads to a sheet charge density in the inversion layer, Q_N , of 10^{-6} C/cm²?
- c) What is the value of E_{ox} , the field in the oxide, when the charge on the gate, $Q_G = 10^{-6} \text{ C/cm}^2$?
- a) The threshold voltage is the V_{GB} applied to make the potential at x=0 equal to $-\phi_{p.}$

First find the flatband voltage, V_{FB}.

$$V_{FB} = -(\phi_{gate} - \phi_{bulk}) = -(.55 + .42) = -0.97V$$

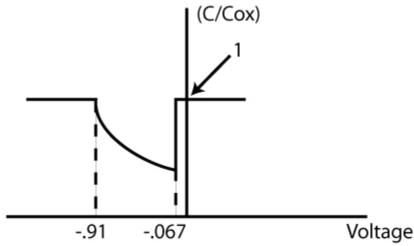
$$V_T = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \times \sqrt{2 \times q \times \varepsilon_{Si} \times N_a \times (-2\phi_p)}$$

$$C_{ox} = \frac{\varepsilon_{SiO2}}{t_{ox}} = 2.3 \times 10^{-7} \, F_{cm}^2$$

Plugging these values into the threshold voltage equation:

$$V_T = 0.58V$$

b) Above threshold, we know how to relate the inversion charge, Q_N , to the applied gate to bulk voltage through the following equation.


$$Q_N = -C_{ox}(V_{GB} - V_T) \longrightarrow V_{GB} = 0.58V - \frac{-10^{-6} C/cm^2}{2.3 \times 10^{-7} F/cm^2} = 4.9V$$

c) We can use Gauss's law to find the magnitude of the electric field in the oxide.

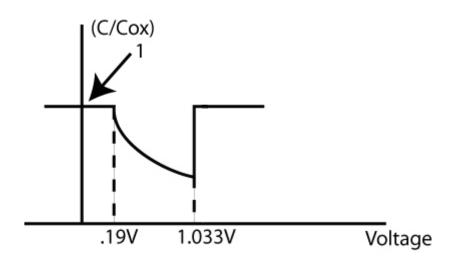
$$E_{ox} = \frac{Q_G}{E_{SiO2}} = 2.9 \times 10^6 \, \text{V/cm}$$

Problem 3

Shown below is a capacitance-voltage plot for an MOS capacitor. The gate is n+, therefore you can assume its potential is 550mV. The silicon dioxide thickness is 15nm, and the body is doped with some concentration of acceptors, N_a.

- a) Determine the threshold voltage, V_T , and the flatband voltage, V_{FB} , on the C-V plot.
- b) Specify the range of voltages where the MOS capacitor is in inversion, depletion, and accumulation.
- c) Calculate the doping concentration in the body, N_a, from the given information
- d) Now assume the gate is doped p+, so the potential of the gate is -550mV. Sketch the C-V, labeling V_T and V_{FB} .

a) By looking at the shape of the C-V, we know that -.91V is the flatband voltage, and -0.067V is the threshold voltage. Since our substrate is p-type, as we go to voltages more positive than V_T , we will be balancing the positive charge on the gate with free electrons in the inversion layer. As we go to voltages more negative than V_{FB} , we will be balancing negative charge on the gate with free holes in the accumulation layer.


b) Accumulation: $V \le -0.91V$, Depletion: -0.91V < V < -0.067VInversion: $V \ge -0.067V$

c) We can most easily calculate the doping concentration from the flatband voltage.

$$V_{FB} = -(\phi_{gate} - \phi_{bulk}) = -\left(.55V - \left(-60mV \times \log\left(\frac{N_a}{n_i}\right)\right)\right) = -0.91V$$

$$N_a = 10^{16} \, \text{cm}^{-3}$$

d) By changing the gate from n+ to p+, we change the gate's potential from 550mV to -550mV. That results in a translation of the C-V 1100mV to the right.

Problem 4

It is sometimes useful in analog circuits to use a transistor biased in triode as a voltage controlled resistor. Use the following parameters to design a p-channel MOSFET with a resistance of $100 \mathrm{K}\Omega$.

$$\mu_p \text{Cox} = 25 \mu \text{A/V}^2$$
 $V_{Tp} = -1 \text{V}$ $V_{GS} = -1.2 \text{V}$ $V_{BS} = 0 \text{V}$

- a) If the device has a width of 10 µm, what is the necessary length?
- b) What is the necessary width to get a $10K\Omega$ resistor, if the length is 5µm?

a) When the MOSFET is in the linear region, it behaves like a voltage controlled resistor. The resistance of a PMOSFET in the linear region can be written as:

$$R = \frac{1}{\mu_p \times C_{ox} \times \frac{W}{L} \times (V_{SG} + V_{Tp})}$$

Now, we can solve for the length to achieve a resistance of $100\text{K}\Omega$.

$$100K\Omega = \frac{1}{25 \frac{\mu A}{V^2} \times \frac{10}{L} \times (V_{SG} - 1)} \longrightarrow L = 5\mu m$$

b) We will use the same equation and solve for the width.

$$10K\Omega = \frac{1}{25 \frac{\mu A}{V^2} \times \frac{W}{5} \times (V_{SG} - 1)} \longrightarrow W = 100 \mu m$$

Problem 5

Hafnium dioxide (HfO₂, ε = 25) is an attractive replacement for silicon dioxide as a gate dielectric due to its high dielectric constant.

Consider an n-channel MOSFET. The channel length, $L=2\mu m$, the width, $W=30\mu m$, the electron mobility is $\mu_n=300~cm^2V^{-1}s^{-1}$ and the substrate doping is $N_a=10^{17}cm^{-3}$. Assume the gate is n+ silicon, so its potential is 550mV.

- a) What thickness of HfO₂ is needed for $V_{Tn} = 0.5 \text{ V}$?
- b) Find the backgate effect parameter, γ_n for the hafnium dioxide gate insulator thickness from (a).
- c) If $I=5\mu A$, what is V_{GS} ? Assume saturation. What is the minimum drain voltage to ensure saturation?
- a) First calculate the flatband voltage.

$$\begin{split} V_{FB} &= -\left(\phi_{gate} - \phi_{bulk}\right) = -\left(.55V - \left(-.42V\right)\right) = -0.97V \\ V_{T} &= 0.5V = V_{FB} - 2\phi_{p} + \frac{1}{C_{ox}} \times \sqrt{2 \times q \times \varepsilon_{Si} \times N_{a} \times \left(-2\phi_{p}\right)} \\ C_{ox} &= \frac{\varepsilon_{HfO2}}{t_{ox}} \end{split}$$

Plugging in the known quantities and solving for t_{ox}:

t_{ox}=85 nanometers

b)
$$\gamma_{n} = \frac{\sqrt{2 \times \varepsilon_{Si} \times q \times N_{a}}}{C_{ox}}$$

$$C_{ox} = \frac{\varepsilon_{HfO2}}{t_{ox}} = \frac{2.21 \times 10^{-12} \ F/cm}{85 \times 10^{-7} \ cm} = 2.6 \times 10^{-7} \ F/cm^{2}$$

$$\gamma_{n} = \frac{\sqrt{2 \times \varepsilon_{Si} \times q \times N_{a}}}{C_{ox}} = 0.687 V^{1/2}$$

c) The drain current equation for an NMOSFET in saturation is shown below.

$$I_d = \frac{1}{2} \times \frac{W}{L} \times \mu_n \times C_{ox} \times (V_{GS} - V_T)^2$$

If I_d is $5\mu A$, we can solve for V_{GS} .

$$5\mu A = \frac{1}{2} \times \frac{30}{2} \times 300 \times 2.6 \times 10^{-7} (V_{GS} - 0.5)^2 \longrightarrow V_{GS} = 0.59V$$

To ensure saturation, the drain source voltage, V_{DS} , must be greater than or equal to $V_{DS,SAT} = V_{GS} - V_T = .09V$. Therefore, the minimum drain source voltage to ensure saturation is 0.09V.