Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012

Microelectronic Devices and Circuits Spring 2007 February 28, 2007 - Homework #3 Due - March 8, 2007

Problem 1

The device drawn below is biased as shown, and a capacitance-voltage (C-V) measurement is taken. The area of the device is 10^{-6} cm². Assume the electrostatic potential in the n+ silicon region, ϕ_{n+} =550mV.

A plot of $(1/C)^2$ as a function of the DC voltage, V, where C is the capacitance is shown below. The device is in reverse bias. The slope, S, is -4.8 * 10^{26} F⁻² V⁻¹.

- a) Derive an expression for the doping, N_a , in the p-type region in terms of the slope S, shown in the plot, and other known parameters (e.g. constants like q ϵ_{Si} , the device area).
- b) Assume now that N_a is 10¹⁶ cm⁻³. Estimate the DC voltage V' where the slope of the plot of (1/C)² vs. voltage changes, as seen in the graph.

Problem 2

A metal-oxide-semiconductor (MOS) device is pictured below. T_{ox} is 15nm. Assume ϕ_{n+} =0.55V, and that N_a in the p region is 10^{17} cm⁻³.

- a) Find the threshold voltage of this device.
- b) What applied bias leads to a sheet charge density in the inversion layer, Q_N , of 10^{-6} C/cm²?

c) What is the value of E_{ox} , the field in the oxide, when the charge on the gate, $Q_G = 10^{-6} \text{ C/cm}^2$?

Problem 3

Shown below is a capacitance-voltage plot for an MOS capacitor. The gate is n+, therefore you can assume its potential is 550 mV. The silicon dioxide thickness is 15 nm, and the body is doped with some concentration of acceptors, N_a .

- a) Determine the threshold voltage, V_T , and the flatband voltage, V_{FB} , on the C-V plot.
- b) Specify the range of voltages where the MOS capacitor is in inversion, depletion, and accumulation.
- c) Calculate the doping concentration in the body, N_{a} , from the given information
- d) Now assume the gate is doped p+, so the potential of the gate is -550mV. Sketch the C-V, labeling V_T and V_{FB} .

Problem 4

It is sometimes useful in analog circuits to use a transistor biased in triode as a voltage controlled resistor. Use the following parameters to design a p-channel MOSFET with a resistance of $100 \mathrm{K}\Omega$.

$$\mu_{p}$$
Cox=25 μ A/V² V_{Tp} = -1V V_{GS} =-1.2V V_{BS} =0V

- a) If the device has a width of 10μm, what is the necessary length?
- b) What is the necessary width to get a $10K\Omega$ resistor, if the length is 5µm?

Problem 5

Hafnium dioxide (HfO₂, ε = 25) is an attractive replacement for silicon dioxide as a gate dielectric due to its high dielectric constant.

Consider an n-channel MOSFET. The channel length, $L=2\mu m$, the width, $W=30\mu m$, the electron mobility is $\mu_n=300~cm^2V^{-1}s^{-1}$ and the substrate doping is $N_a=10^{17}cm^{-3}$. Assume the gate is n+ silicon, so its potential is 550mV.

- a) What thickness of HfO₂ is needed for $V_{Tn} = 0.5 \text{ V}$?
- b) Find the backgate effect parameter, γ_n for the hafnium dioxide gate insulator thickness from (a).
- c) If $I=5\mu A$, what is V_{GS} ? Assume saturation. What is the minimum drain voltage to ensure saturation?