
“quiz2_soln” — 2016/4/25 — 14:52 — page 1 — #1

MIT
6.005: Software Construction
Max Goldman revised Monday 25th April, 2016, 14:52

Solutions to Quiz 2 (April 22, 2016)

Problem 1 (Multiple Choice) (20 points).
For each question, choose all correct answers.
(a) Which of the following are true of thread confinement?

A. all private final fields are confined

B. all immutable values are confined

C. the values of all local variables are confined

D. a BlockingQueue used to implement message passing should be confined

E. the view tree in a Swing GUI should be confined

Solution. E. �

(b) Select all the strings below where the entire string is matched by the regular expression:

([a-z]+[1-9]+)*[1-9]

A. bb8b8b

B. r2d222

C. c3po000

D. 8

E. r5d4

Solution. B, D. �

(c) Consider an immutable class ComplexNum for representing complex numbers:

private final double realPart;
private final double imaginaryPart;

// AF: represents (realPart + i * imaginaryPart)
// RI: true

// ... other creators, producers, observers ...

public double absoluteValue() {
return Math.sqrt(realPart*realPart + imaginaryPart*imaginaryPart)

}

@Override public boolean equals(Object other) {
if (!(other instanceof ComplexNum)) { return false; }
ComplexNum that = (ComplexNum)other;
return this.absoluteValue() == that.absoluteValue();

}

“quiz2_soln” — 2016/4/25 — 14:52 — page 2 — #2

2 Solutions to Quiz 2 (April 22, 2016)

This implementation of equals...

A. is reflexive

B. is symmetric

C. is transitive

D. returns true for ComplexNum pairs that should not be equal according to the AF

E. returns false for ComplexNum pairs that should be equal according to the AF

Solution. A, B, C, D. �

(d) Since ServerSocket.accept() is a blocking method, we can conclude that...

A. accept() will not return until a client makes a connection

B. accept() will throw an exception if called when no clients are connecting

C. calling accept() could prevent the program from terminating

D. it is safe to call accept() simultaneously from multiple threads

E. while accept() is blocking, calling other methods on the same ServerSocket instance from other
threads will block

Solution. A, C. �

Problem 2 (Map/Filter/Reduce) (18 points).
Ben Bitdiddle is trying to select a new password for his social media accounts. Given the following interface
for representing passwords:

public interface Password {
public String plainText();
public int strength();

}

For each method below, fill in the blanks to implement the specification using map, filter, and reduce. You
must use exactly two operations, but you may use the same operation twice. On each line, fill in the first
blank with map, filter, or reduce, and fill in the second blank with a lambda expression. Solutions will
be graded for correctness and clarity.

(a) /**
* @param passwords the passwords to consider

* @param minStrength the minimum strength a password should have

* @return the plaintext strings of passwords that have strength at least minStrength

*/
public static List<String> strongEnough(List<Password> passwords, int minStrength) {

return passwords.stream()

. ()

. ()

.collect(toList());
}

“quiz2_soln” — 2016/4/25 — 14:52 — page 3 — #3

Solutions to Quiz 2 (April 22, 2016) 3

(b) /**
* @param passwords the passwords to consider

* @param substring required substring

* @return the plaintext strings of passwords that contain substring

*/
public static List<String> containing(List<Password> passwords, String substring) {

return passwords.stream()

. ()

. ()

.collect(toList());
}

(c) /**
* @param passwords the passwords to consider

* @return the average strength of the passwords

*/
public static double averageStrength(List<Password> passwords) {

return passwords.stream()

. ()

. (0,)
/ (double)passwords.size();

}

Solution.

(a) .filter(p -> p.strength() >= minStrength)
.map(p -> p.plainText())

(b) .map(p -> p.plainText())
.filter(p -> p.contains(substring))

(c) .map(p -> p.length())
.reduce(0, (a,b) -> a+b)

�

Problem 3 (Abstract Data Types) (25 points).
A tree is a data structure that consists of a root node and zero or more children which themselves are also
trees. A binary tree is a tree in which each node has at most two children, designated left and right. For
example:

“quiz2_soln” — 2016/4/25 — 14:52 — page 4 — #4

4 Solutions to Quiz 2 (April 22, 2016)

Simon Straightforward is an enthusiastic 6.005 student who just learned about ADTs and wants to build
a class to represent binary trees of positive integers. He comes up with this internal representation:

/** A binary tree of positive integers. */
public class PosIntBinaryTree {

private final List<List<Integer>> nodes;
}

Simon wants each sub-list in nodes to represent a level in the binary tree, using 0 in place of missing
elements. For example, the binary tree shown above is represented by the following list of lists:

[[1]
[3, 5]
[0, 2, 6, 4]]

(a) Silly Simon forgot to document his abstraction function and rep invariant!

Select statements to put into the AF and RI of PosIntBinaryTree by circling the letters of all statements
to include from the list below. Include all good statements that are compatible with Simon’s design.

AF: A B C D E F G

RI: A B C D E F G

A. for all 0 <= i < nodes.size(), nodes.get(i).get(0) > 0

B. if nodes.size() == 0, represents the empty tree

C. if nodes.size() > 0, nodes.get(0).get(0) is the root node

D. nodes.get(i).size() == 2^i

E. nodes.size() == 2^k for some nonnegative integer k

F. for node nodes.get(i).get(j),
its left child (if any) is nodes.get(i+1).get(j*2)

G. for node nodes.get(i).get(j),
its right child (if any) is nodes.get(i+1).get(j*2+1)

Solution. AF: B, C, F, and G. RI: D. �

Rob Recursive, an even more enthusiastic student, wants to represent binary trees of any integers.

(b) What bad practice in Simon’s rep prevents Rob from easily extending it?

Solution. Magic number 0. �

(c) Rob decides to implement the binary trees recursively, using an interface IntBinaryTree with two
concrete variants, one of which represents the empty tree. He also decides the type will be immutable.

/** An immutable binary tree of integers. */
public interface IntBinaryTree { ... }

Write a recursive datatype definition for IntBinaryTree:

Solution. IntBinaryTree = Empty() + Tree(value: int, left,right: IntBinaryTree) �

“quiz2_soln” — 2016/4/25 — 14:52 — page 5 — #5

Solutions to Quiz 2 (April 22, 2016) 5

(d) Start implementing the concrete variant that represents the empty tree by writing its field declarations,
abstraction function, and rep invariant. If parts of the AF or RI would normally be assumed in 6.005, write
them explicitly.

Fields:

AF:

RI:

Solution.

No fields

AF: represents the empty immutable binary tree of integers

RI: true �

(e) Start implementing the other concrete variant by writing its field declarations, abstraction function, and
rep invariant. If parts of the AF or RI would normally be assumed in 6.005, write them explicitly.

Fields:

AF:

RI:

Solution.

private final int value;
private final IntBinaryTree left, right;

AF: represents the immutable binary tree of integers with root node value, left subtree left, and right
subtree right

RI: left,right != null �

Problem 4 (Recursive Data Types) (20 points).
A Boolean formula is a propositional expression consisting of variables, ∧ (and) and ∨ (or) binary operators,
and ¬ (not) unary operators.

For example, the following expression means “either P or Q is true, and either P is false or R is true”:

(P ∨Q) ∧ (¬P ∨R)

A formula is in negation normal form if the negation operator (¬) is only applied directly to variables.
For example, P ∧ (¬Q ∨R) is in negation normal form, but P ∧ ¬(Q ∨R) and ¬(P ∧ (¬Q ∨R)) are not.

Here is a datatype definition for an ADT to represent negation normal form Boolean formulas:

NegNormFormula = Variable(name: String, isNegated: boolean) +
And(left: NegNormFormula, right: NegNormFormula) +
Or(left: NegNormFormula, right: NegNormFormula)

Now consider this specification:

// returns a negation of the input formula
negate : NegNormFormula -> NegNormFormula

(a) Classify this operation according to our types of ADT operations:

“quiz2_soln” — 2016/4/25 — 14:52 — page 6 — #6

6 Solutions to Quiz 2 (April 22, 2016)

Solution. Producer. �

(b) Implement the operation. Use De Morgan’s laws and the rule for double negation:

¬(P ∧Q) = ¬P ∨ ¬Q and ¬(P ∨Q) = ¬P ∧ ¬Q and ¬¬P = P

public class Variable implements NegNormFormula {
private final String name;
private final boolean isNegated;
public Variable(String name, boolean isNegated) { ... }
@Override public NegNormFormula negate() {

Solution. return new Variable(name, ! isNegated); �

}
}
public class And implements NegNormFormula {

private final NegNormFormula left;
private final NegNormFormula right;
public And(NegNormFormula left, NegNormFormula right) { ... }
@Override public NegNormFormula negate() {

Solution. return new Or(left.negated(), right.negated()); �

}
}
public class Or implements NegNormFormula {

private final NegNormFormula left;
private final NegNormFormula right;
public Or(NegNormFormula left, NegNormFormula right) { ... }
@Override public NegNormFormula negate() {

Solution. return new And(left.negated(), right.negated()); �

}
}

Problem 5 (Thread Safety) (17 points).
It’s election season! With the tight race for president of Fictional Dystopia, you’ve been asked to develop a
secure online voting system.

In Fictional Dystopian elections, each voter has exactly two votes. Each voter can vote twice for the same
candidate, or split their vote between two different candidates.

“quiz2_soln” — 2016/4/25 — 14:52 — page 7 — #7

Solutions to Quiz 2 (April 22, 2016) 7

public class TwoVotesEachElection {

private final AtomicInteger[] voteCounts;
private final Set<String> voters;

// ... constructor initializes voteCounts to an array of AtomicIntegers,
// each with value zero, and initializes voters to a threadsafe Set ...

public int getNumberOfCandidates() { return voteCounts.length; }

// requires: 0 <= can1, can2 < getNumberOfCandidates()
// effects: if and only if the voter hasn’t already voted, casts both votes
public void vote(final String voterID, final int can1, final int can2) {

if (voters.contains(voterID)) { return; }
voters.add(voterID);
// use the atomic incrementAndGet operation
// (we don’t need the "get" part, but there is no plain "increment")
voteCounts[can1].incrementAndGet();
voteCounts[can2].incrementAndGet();

}

// ...
}

Suppose election is a TwoVotesEachElection with 4 candidates (so voteCounts.length = 4).

(a) Unfortunately, even though TwoVotesEachElection uses threadsafe datatypes, the vote() opera-
tion is not threadsafe. Explain clearly an interleaving that violates thread safety for TwoVotesEachElection.

Solution. Two threads enter vote with the same voterID not yet in voters.

Both threads call voters.contains and obtain false, then both call voters.add successfully.

At this point, both threads will increment the vote counts for their can1 and can2, giving this voter 4 votes
instead of 2, in violation of the postcondition. �

Louis Reasoner is convinced that using AtomicInteger is unnecessary, so he changes the code to use
primitive integers instead:

public class LouisTwoVotesEachElection {

private final int[] voteCounts;
private final Set<String> voters;

// ... constructor initializes voteCounts to an array of zeros,
// and initializes voters to a threadsafe Set ...

public int getNumberOfCandidates() { return voteCounts.length; }

// requires: 0 <= can1, can2 < getNumberOfCandidates()
// effects: if and only if the voter hasn’t already voted, casts both votes
public void vote(final String voterID, final int can1, final int can2) {

if (voters.contains(voterID)) { return; }

“quiz2_soln” — 2016/4/25 — 14:52 — page 8 — #8

8 Solutions to Quiz 2 (April 22, 2016)

voters.add(voterID);
voteCounts[can1]++;
voteCounts[can2]++;

}

// ...
}

Of course, this just makes the problem worse.

(b) Suppose 100 voters, each using a different thread, participate in our 4-candidate election by concur-
rently calling Louis’ vote(). Every voter uses a unique ID, and no one casts both of their votes for the
same candidate. The value of the sum

voteCounts[0] + voteCounts[1] + voteCounts[2] + voteCounts[3]

could be which of the following? Choose all that apply.

A. 0

B. 1

C. 2

D. 4

E. 100

F. 200

G. 400

Solution. C, D, E, F.

At least one thread will successfully increment the count for its first candidate; same for some thread and its
second candidate. With no races at all, 200 votes will be counted. �

(c) Louis wants to fix the thread safety problems by putting all the code inside vote() in a synchronized
block. Of the following objects in Louis’ version of the code, which are suitable for us to synchronize on in
order to ensure thread safety for concurrent calls to vote()? Choose all that apply.

A. this

B. voterID

C. voters

D. voteCounts

E. voteCounts[0]

Solution. A, C, D.

Locking on different voterID strings doesn’t help. voteCounts[0] is a primitive in Louis’ code. �

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

