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1 Surface Stress

So far we have been dealing with quantities like density and velocity, which at a

given instant have specific values at every point in the fluid or other continuously

distributed material. The density   (
v 
r ,t)  is a scalar field in the sense that it has a scalar value

at every point, while the velocity   
v 
v (

v 
r ,t) is a vector field, since it has a direction as well as a

magnitude at every point.

Fig. 1:  A surface element at a point in a continuum.

The surface stress is a more complicated type of quantity. The reason for this is that

one cannot talk of the stress at a point without first defining the particular surface through

that point on which the stress acts. A small fluid surface element centered at the point   
v 
r  is

defined by its area A (the prefix  indicates an infinitesimal quantity) and by its outward

unit normal vector   
v 
n . The stress exerted by the fluid on the side toward which   

v 
n  points on

the surface element is defined as

  
v 

= lim
A→0

v 
F 

A
(1)

where   
v 
F  is the force exerted on the surface by the fluid on that side (only one side is

involved). In the limit A → 0 the stress is independent of the magnitude of the area, but

will in general depend on the orientation of the surface element, which is specified by   
v 
n . In

other words,

  
v 

=
v 
(
v 
x ,t,

v 
n ) . (2)
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The fact that   
v 

 depends on   
v 
n  as well as x,  y,  z  and t appears at first sight to

complicate matters considerably. One apparently has to deal with a quantity that depends on

six independent variables (x, y, z, t, and the two that specify the orientation   
v 
n ) rather than

four. Fortunately, nature comes to our rescue. We find that because   
v 

 is a stress, it must

depend on   
v 
n  in a relatively simple way.  

We have seen that, in the absence of shear forces, Newton's law requires that the

surface stress have the particularly simple form

  
v 

= −p
v 
n    (no shear forces) (3)

where p, the magnitude of the normal compressive stress, is a function of   
v 
r  and t only.

This is Pascal's principle, which states that in the absence of shear forces, at any point in

the fluid, the stress is always normal to the surface on which it acts, and its magnitude is

independent of the surface orientation. In the absence of shear stresses, therefore, the stress

on any surface, anywhere in the fluid, can be expressed in terms of a single scalar field

  p(
v 
r ,t) provided there are no shear forces. This gives rise to the relatively simple form of

the equation of motion for inviscid flow.

When shear forces are present, as they always are in practice except when the fluid

is totally static in some reference frame, Newton's law imposes a somewhat more

complicated constraint on the relationship between   
v 

 and   
v 
n . We shall see that the stress on

any surface anywhere in the fluid can in general be specified in terms of six scalar functions

of x, y, z, and t. These six are the independent components of a quantity called the stress

tensor.

2  The Stress Tensor

The first and simplest thing that Newton's law implies about the surface stress is

that, at a given point, the stress on a surface element with an orientation   
v 
n  must be equal in

magnitude, but opposite in direction, to that on a surface element with an opposite

orientation   −
v 
n , that is,

  
v 
(
v 
r ,t,−v 

n ) = −
v 
(
v 
r ,t,

v 
n ) (4)
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This result can be obtained by considering a thin, disc-shaped fluid particle at   
v 
r , as shown

in Fig. 2, with very small area A and thickness h. One side of the disc has an orientation

  
v 
n  and the other   −

v 
n . The equation of motion for this fluid particle reads

  
h A

D
v 
v 

Dt
=

v 
(
v 
n ) A +

v 
(−

v 
n ) A + h A

v 
G  (5)

where   
v 
G  is the body force per unit mass. When we let h approach zero, so that the two

faces of the disc are brought toward coincidence in space, the inertial term on the left and

the body force term on the right become arbitrarily small compared with the two surface

force terms, and (4) follows immediately.

Fig. 2:  Illustration for equation (4)

Newton's law also implies that the stress has a more profound attribute which leads

to the concept of the stress tensor. The stress at a given point depends on the orientation of

the surface element on which it acts. Let us take as "reference stresses," at a given point   
v 
r 

and instant t, the values of the stresses that are exerted on a surface oriented in the positive

x-direction, a surface oriented in the positive y-direction, and a surface oriented in the

positive z-direction (Fig. 3). We can write these three reference stresses, which of course

are vectors, in terms of their components as, respectively,

  
v 
(
v 
i ) = xx

v 
i + yx

v 
j + zx

v 
k 

  
v 
(
v 
j ) = xy

v 
i + yy

v 
j + zy

v 
k (6)

  
v 
(
v 
k ) = xz

v 
i + yz

v 
j + zz

v 
k 
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Figure 3:  Reference stresses at a point in the continuum.

Thus,  xx , yx  and zx  represent the x, y,  and z components of the stress acting on the

surface whose outward normal is oriented in the positive x-direction, etc. (Fig. 3). The first

subscript on ij identifies the direction of the stress, and the second indicates the outward

normal of the surface on which it acts. In (6) the ij ' s  are of course functions of position x,

y, z, and time t, and the reference stresses themselves also depend on x, y, z , and t; we

have simply not indicated this dependence.

We shall now show, again by using Newton's law, that the stress on a surface

having any orientation   
v 
n at the point   

v 
r  can be expressed in terms of the reference stresses

  
v 
(
v 
i ) ,   

v 
(
v 
j ) , and   

v 
(
v 
k ) or, more specifically, in terms of their nine components

xx ,  yx , . . . , zz .
Consider a fluid particle which at time t has the shape of a small tetrahedron

centered at x, y, z. One of its four faces has an area A and an arbitrary outward normal   
v 
n ,

as shown in Fig. 4, and the other three faces have outward normals in the negative x, y and

z directions, respectively. The areas of the three orthogonal faces are related to A by

Ax = cos nx A = nx A

Ay = cos ny A = ny A (7)

Az = cos nz A = nz A



6

Fig. 4:  Tetrahedron-shaped fluid particle at (x, y, z).

where Ax represents the area of the surface whose outward normal is in the negative x-

direction, nx  is the angle between   
v 
n  and the x-axis and nx is the x-component of   

v 
n , and

so on.

Consider what Newton's law tells us about the forces acting on the tetrahedron as

we let it shrink in size toward the point   
v 
r  around which it is centered. Since the ratio of the

mass of the tetrahedron to the area of any one of its faces is proportional to the length of

any one of the sides, both the mass times acceleration and the body force become arbitrarily

small compared with the surface force as the tetrahedron is shrunk to a point (c.f. (5) and

the paragraph that follows it). Hence, in the limit as the tetrahedron is shrunk to a point, the

surface forces on the four faces must balance, that is,

  
v 
(
v 
n ) A +

v 
(
v 
j ) Ax +

v 
(
v 
k ) Az = 0 . (8)

Now we know from (4) that the stress on a surface pointing in the   −
v 
i  direction is the

negative of the stress on a surface in the   +
v 
i  direction, etc. Using this result and (7) for the

areas, (8) becomes

  
v 
(
v 
n ) =

v 
(
v 
i )nx +

v 
(
v 
j )ny +

v 
(
v 
k )nz . (9)

Alternatively, if we use (6) to write the reference stresses in terms of their components, we

obtain the components of   
v 
(
v 
n ) as
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  x (
v 
n ) = xxnx + xyny + xznz

  y (
v 
n ) = yxn x + yyny + yznz (10)

  z (
v 
n ) = zxnx + zyny + zznz .

Thus the stress   
v 
(
v 
n ) acting at   

v 
x ,t  on a surface with any arbitrary orientation   

v 
n  can be

expressed in terms of the nine reference stress components

xx xy xz

yx yy yz

xz zy zz  .

These nine quantities, each of which depends on position and time, are the stress tensor

components. Once the stress tensor components are known at a given point, one can

compute the surface stress acting on any surface drawn through that point: one simply

determines the components of the outward unit normal   
v 
n  of the surface involved, and uses

(10).

Equation (10) can be written more succinctly in conventional tensor notation, where

i and j can represent x, y, or z and where it is understood that any term which contains the

same index twice actually represents the sum of all such terms with all possible values of

the repeated index (for example, ii  xx + yy + zz). In this notation (10) reads simply

  i(
v 
r ,t,

v 
n ) = ij(

v 
r ,t)n j (11)

The importance of the stress tensor concept in continuum theory is this: It allows us

to describe the state of stress in a continuum in terms of quantities that depend on position

and time, but not on the orientation of the surface on which the stress acts. Admittedly,

nine such quantities are needed (actually only six are independent, as we shall see shortly).

Still, it is far easier to deal with them than with a single quantity which, at any given

position and time, has a doubly infinite set of values corresponding to different surface

orientations   
v 
n .

Physically, the stress tensor represents the nine components of the three reference

stresses at the point   
v 
r  and time t in question. The reference stresses are by custom chosen

as the stresses on the three surface elements that have outward normals in the direction of

the positive axes of the coordinate system being used. Thus in our Cartesian coordinates,
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the reference stresses are the stresses on the surfaces pointing in the positive x, y,  and z

directions, and the stress tensor is made up of the nine components of these three stresses,

ij being the i-component of the stress on the surface whose normal points in the j-

direction. In a cylindrical coordinate system, the stress tensor would be comprised of the

components of the stresses acting on the three surfaces having outward normals in the

positive r,  and z directions.

Why are the quantities ij  "tensor components," and not just an arbitrary bunch of

nine scalar quantities? The answer lies in the special way the values of these nine quantities

transform when one changes one's reference frame from one coordinate system to another.

Equation (10) tells us that when a coordinate change is made, the three sums ijnj  must

transform as components of a vector. A set of nine quantities ij  that transform in this

manner is by definition a tensor of second rank. (A tensor of first rank is a vector, whose

three components transform so that the magnitude and direction of the vector remain

invariant; a tensor of zeroth rank is a scalar, a single quantity whose magnitude remains

invariant with coordinate changes.)

3 Symmetry of the Stress Tensor

One further piece of information emerges from applying Newton's law to an

infinitesimal fluid particle. This is that the stress tensor is in most cases symmetric, that is,

ij = ji  for i ≠ j .

The proof follows from considering the angular acceleration of a little fluid particle

at x, y, z.  For convenience, we let it be shaped like a little cube with infinitesimal sides x,

y, and z (Fig. 5). Since we shall be taking the limit where x, y, z → 0, where the

fluid particle is reduced to a point, we can safely assume that the values of the density,

velocity, stress tensor components, etc. are almost uniform throughout the cube. What is

more, if the cube rotates by an infinitesimal amount, it does so almost as a solid body (i.e.

at essentially zero angular distortion), since in the limit x, y, z → 0, a finite angular

distortion would require infinite shear in a viscous fluid. If the cube has an angular velocity
˙ 

z  in the z-direction, say, and rotates like a solid body, we can derive from Newton's law
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Fig. 5: Illustration of the reason for the stress tensor's symmetry.

written in angular momentum form for a material volume, that at any given instant its

angular velocity increases according to

Iz

d ˙ 
z

dt
= Tz  , (12)

where

Iz = (x 2 + y 2 )dx dy dx 
− z 2

+ z 2

∫
− y 2

+ y 2

∫
− x 2

+ x 2

∫

    =
( x)2 + ( y)2[ ]

12
x y z (13)

is the moment of inertia of the cube and Tz is the net torque acting on the cube, relative to

an axis running through the center of the cube parallel to the z-axis. Equation (13) is
obtained by writing the cube’s angular velocity as v = ˙ (t)r , where r 2 = x 2 + y 2 , x  and

y  being the Cartesian coordinates fixed in the rotating cube.

The torque in (12) is obtained by considering the stresses acting on the cube (Fig.
5). On the face with   

v 
n =

v 
i , for example, there is by definition a stress xx  in the positive x-

direction and a stress yx  in the positive y-direction. On the face with   
v 
n = −

v 
i , the

corresponding stresses have the same magnitudes but opposite directions [see (10) or (4)].
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The net torque about an axis through the cube's center, parallel to the z- axis, is caused by

the shear forces (the pressure forces act through the cube’s center) and by any volumetric

torque exerted by the external body force field. A body force field like gravity acts through

the cube's center of mass and exerts no torque about that point. Let us assume for the sake

of generality, however, that the external body force may exert a torque   
v 
t  per unit volume at

the particle's location. The net torque in the z-direction around the particle's center would

then be

Tz = 2
x

2 yx y z − 2
x

2 xy y z + tz x y z

      = ( yx − xy + tz ) x y z (14)

From (12) - (14) we see that

yx − xy + tz =
12

d ˙ 
z

dt
( x)2 + ( y)2[ ] (15)

As we approach a point in the fluid by letting x, y → 0, this reduces to

yx = xy − tz ,

or, more generally, the result that the off-diagonal stress tensor components must satisfy

ji = ij + tk  , (16)

where i, j, k form a right-hand triad (e.g. in Cartesian coordinates they are in the order x,

y, z, or y, z, x, or z, x, y).

  Volumetric body torque can exist in magnetic fluids, for example (e.g. see R. E.

Rosensweig, Ferrohydrodynamics, 1985, Chapter 8). In what follows we shall assume

that volumetric body torque is absent, in which case (16) shows that the off-diagonal or

shear terms in the stress tensor are symmetric,

ji = ij        (i ≠ j) . (17)



11

This means that three of the nine components of the stress tensor can be derived from the

remaining ones; that is, the stress tensor has only six independent components.

4 Equation of Motion in Terms of the Stress Tensor

A general equation of motion in differential form may be derived by applying

Newton's law to a small but finite fluid particle. Consider again a particle which at time t

has the shape of a cube centered about (x, y, z) as in Fig. 6, with sides x, y, and z

parallel to the x, y, and z axes at time t. Although the sides are small, they are not zero and

the components of the stress tensor will have slightly different values on the faces of the
cube than at the center of the cube. For example, if the stress tensor components ij  are

specified at (x, y, z), the center of the cube, then their values will be

ij + ij

x

x

2

at the face whose outward normal is in the positive x-direction, and

ij − ij

x

x

2

at the opposite face.

Figure 6 shows all those stresses which act on the cube in the x-direction,

expressed in terms of the stress tensor. The arrows indicate the directions of the stresses

for positive values of ij [see (10)]. The net x-component of surface force on the cube is

obtained by multiplying the stresses by the areas on which they act and summing:

xx

x
+ xy

y
+ xz

z

 
 
  

 
x y z  . (18)
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Fig. 6: x-direction surface stresses acting on a fluid particle.

Since x y z is the particle's volume, we identify the quantity within the brackets as the

net x-component of surface force per unit volume at a point in a fluid. The expressions for

the y and z components are similar, except that the first subscript x is replaced by y and z,

respectively.

The equation of motion can now be written down directly for the cubical fluid

particle in Fig. 6. The x-component of the equation states that the mass times the

acceleration equals the net surface force plus the body force acting on the particle:

x y z
Dvx

Dt
= xx

x
+ xy

y
+ xz

z

 
 
  

 
x y z + x y zGx

Here, D/Dt represents the substantial derivative, which is defined elsewhere, and Gx is the

x-component of the external body force per unit mass. This yields

Dv x

Dt
= xx

x
+ xy

y
+ xz

z

 
 
  

 
+ Gx . (20a)

For the y and z components we obtain similarly

Dv y

Dt
= yx

x
+ yy

y
+ yz

z

 
 
  

 
+ Gy (20b)

Dvz

Dt
= zx

x
+ zy

y
+ zz

z

 
 
  

 
+ Gz (20c)
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or, more succinctly,

Dvi

Dt
= ij

x j

+ Gi (20)

where a summation over j=x, y, and z is implied. Equation (20) states that at a given point

and time, the mass per unit volume times the acceleration in the i-direction (the left-hand

term) equals the the net surface force per unit volume in the i-direction (the first term on the

right) plus the body force per unit volume in the i-direction (the second term on the right).

The equation applies quite generally to any continuous distribution of matter, whether fluid

or solid, and is not based on any assumption other than that the continuum hypothesis

applies.1 Eq. (20) is, however, incomplete as it stands. To complete it, one must specify

the stress tensor components and the body force components, just as one must define the

forces acting on a solid particle before one can derive its motion. The specification of the

body force is straightforward. In a gravitational field, for example, the force   
v 
G  per unit

mass is well known and is of the same form for all substances.  The form of the stress

tensor is different for different classes of materials.

5 Stress Tensor for Newtonian Fluids

There remains the task of specifying the relationship between the stress tensor

components and the flow or deformation field. The simplest model of a solid continuum is

the well-known elastic one, where stresses and strains are linearly related. The defining

attribute of a simple fluid, however, is that it keeps deforming, or straining, as long as any

shear stress, no matter how small, is applied to it. Obviously, no unique relation can exist

between the shear stresses and the shear strains if strain can increase indefinitely at constant

shear. It is observed, however, that a fluid tends to resist the rate of deformation: the higher

the applied shear stress, the faster the rate of shear deformation. In many fluids the relation

between stress and rate of strain in a fluid particle is linear under normal conditions.

The Newtonian model of fluid response is based on three assumptions:

                                                
1In solid mechanics the acceleration term in Eq. (20) is not included if one is concerned with static or quasi-
static situations, and the body force term is neglected when the gravitational loads induced by the weight of
the structure itself are small.  In such cases on is left with the simple statement that the net surface stress
per unit volume is zero at every point in the medium.
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(a)  shear stress is proportional to the rate of shear strain in a fluid particle;

(b)  shear stress is zero when the rate of shear strain is zero;

(c) the stress to rate-of-strain relation is isotropic—that is, there is no

preferred orientation in the fluid.

A Newtonian fluid is the simplest type of viscous fluid, just like an elastic solid

(where stresses are proportional to strains) is the simplest type of deformable solid.

The       shear       stresses       and       the        ordinary        viscosity

To implement the Newtonian assumptions we consider first a typical shear term in
the tensor, e.g xy . Fig. 7 depicts the deformation of a fluid particle as it moves between

time t and time t+dt. In this interval the shear stress xy  produces in the fluid particle an

incremental angular strain d xy

d xy =

vx

y
ydt

 
 
  

 
y

+

vy

x
xdt

 
 
  

 
x

 .

Fig. 7: Shear deformations in a fluid particle.

The rate of angular (or shear) strain in the fluid particle as seen by an observer sitting on it

is therefore

D xy

Dt
=

vx

y
+

vy

x
. (21)
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The Newtonian assumptions (a) and (b) thus require that

xy =
D xy

Dt
=

vx

y
+

vy

x

 
 
  

 
. (22a)

where the coefficient of proportionality  is called the shear, or "ordinary", viscosity

coefficient, and is a property of the fluid. Similarly,

xz =
D xz

Dt
=

vx

z
+

vz

x

 
 

 
 (22b)

yz =
D yz

Dt
=

vy

z
+

vz

y

 
 
  

 
(22c)

or in general,

ij =
vi

x j

+
v j

xi

 

 
  

 
 (i ≠ j)  . (22)

The coefficient of proportionality is the same in all three shear stresses because a

Newtonian fluid is isotropic.

The        normal       stresses

        Next consider a typical normal stress, that is, one of the stress tensor's diagonal
terms, say xx . The derivation of such a term's form is not as simple as that of the shear

terms, but can nevertheless be done in fairly physical terms by noting that linear and shear

deformations generally occur hand in hand. The trick is to find how the linear stresses and

deformations are related to the shear stresses and deformations.

Consider a small fluid particle which at time t is a small cube with sides of length h

parallel to the x, y and z axes. We will again be considering the limit of a particle "at a

point", that is, the limit h → 0.  At time t , its corner A is at (x, y, z). Between t and t+dt, it

moves and deforms as in Fig. 8.  The sides AB and AD will in general rotate by unequal

amounts. This will result in a shear deformation of the particle. The shear deformation will

cause one of the diagonals AC and BD to expand and the other to contract, that is, it will
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give rise to linear deformations in the x' and y' directions which are rotated 45o relative to

the x and y axes.

Now, we know the relationship between the shear stress and the rate of angular

strain of the particle in the (x, y) frame. If we can connect the shear stresses in this frame

and the stresses in the rotated (x',  y ') frame, and the shear strain rates in the (x, y) frame

and the

Fig. 8: Why shear and linear deformations are related.

strain rates on the (x',  y ') frame, we will arrive at a relation between the stresses and the

strain rates in the (x',  y ') frame. Since the reference frames are arbitrary, the relationship

between stresses and rates of strain for the (x', y') frame must be general in form.

        We start by considering the forces acting on one half of the fluid particle in Fig. 8: the

triangular fluid particle ABD as shown in Fig. 9. Since we are considering the limit

h → 0, where the ratio of volume to area vanishes, the equation of motion for the particle

will reduce to the statement that the surface forces must be in balance. Figure 9 shows the

surface forces on particle ABD, expressed in terms of the stress tensor components in the

original and the rotated reference frames. A force balance in the x'-direction requires that

′ xx = xx + yy

2
+ yx  . (23)

Similarly, a force balance in the y'-direction on the triangular particle ACD requires that

                                 ′ yy = xx + yy

2
− yx  . (24)

Adding (23) and (24) we obtain
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                              ′ xx − ′ yy = 2 yx  . (25)

Using the relation (22a) between the shear stress and the rate of strain, this becomes

′ xx − ′ yy = 2
D xy

Dt
(26)

which relates the diagonal stress tensor terms in the (x',  y ') frame to the angular strain rate

in the (x, y) frame.

Fig. 9: Stresses on two halves of the particle in Fig. 8.

Fig. 10: Deformations of the two triangular particles in Fig. 9.

To close the loop we must relate the angular strain rate in the (x,  y) frame to the

strain rates in the (x', y ') frame. Figure 10 shows the deformations of the triangular

particles ABD and ACD between t and t+dt. The deformations a, b, c, and d in the figure

are related to the incremental linear strains d  and angular strains d  in the (x, y) frame by
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d x =
c

h

d y =
a

h
(27)

d xy =
c + d

h
 .

Here, d x  is the linear strain (increase in length divided by length) of the particle in the x-

direction,  and d y  is its linear strain in the y-direction. The linear strain in the x' direction

can be computed in terms of these quantities from the fractional stretching of the diagonal

AC, which is oriented in the x' direction. Recalling that ACD is an equilateral triangle at

time t, and that the deformations between t and t+dt are infinitesimally small, we obtain

      d ′  x =
d(AC)

(AC)
=

a + d

2
+

b + d

2
h 2

=
1

2

c

h
+

a

h
+

b + d

h
 
 

 
 =

1

2
(d x + d y + d xy )  . (28)

The linear strain in the y' direction is obtained similarly from the fractional stretching of the

diagonal BD of the triangular particle ABD as

d ′  y =
d(BD)

(BD)
=

1

2
d x + d y − d xy( ) . (29)

The sum of the last two equations shows that the difference of the linear strains in the x'

and y' directions is equal to the angular strain in the (x, y) plane:

d ′  x − d ′  y = d xy  . (30)

The differentials refer to changes following the fluid particle. The rates of strain following

the fluid motion are therefore related by

D ′  x 

Dt
−

D ′  y 

Dt
=

D xy

Dt
. (31)
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If we now eliminate the reference to the (x, y) frame by using (26), we obtain

′  x ′  x − ′  y ′  y = 2
D ′  x 

Dt
−

D ′  y 

Dt

 
 
  

 
  . (32)

The linear strain rates can be evaluated in terms of the velocity gradients by referring to Fig.

11. Between t and t+dt, the linear strain suffered by the fluid particle's side parallel to the

x' axis is

d ′  x =

v ′  x 

′ x 
xdt

x
=

v ′  x 

′ x 
dt

so that

D ′  x 

Dt
=

v ′  x 

′ x 
 . (33)

Fig. 11: Linear deformations of a fluid particle.

A similar equation is obtained for the linear strain rate in the y' direction. Using these

relations in (32), we now obtain

′  x ′  x − ′  y ′  y = 2
v ′  x 

′ x 
−

v ′  y 

′ y 

 
 
  

 
. (34)

Similarly we obtain, by viewing the particle in the (x', z') plane,
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′  x ′  x − ′  z ′  z = 2
v ′  x 

′ x 
−

v ′  z 

′ z 

 
 

 
 . (35)

Adding equations (34) and (35) we get

′  x ′  x = ′  x ′  x 
+ ′  y ′  y 

+ ′  z ′  z 

3
+ 2

v ′  x 

′ x 
−

2

3

v ′  x 

′ x 
+

v ′  y 

′ y 
+

v ′  z 

′ z 

 
 
  

 
 (36)

Since the coordinate system (x', y ') is arbitrary, this relationship must apply in any

coordinate system. We thus have our final result:

  
xx = −pm + 2

vx

x
−

2

3
∇ ⋅ v v (37)

where the quantity

pm = − xx + yy + zz( )
2

= − ii

3
(38)

is the "mechanical" pressure, to be distinguished from the "thermodynamic" pressure

which is discussed below. The mechanical pressure is the negative of the average value of

the three diagonal terms of the stress tensor, and serves as a measure of local normal

compressive stress in viscous flows where that stress is not the same in all directions. The

mechanical pressure is a well defined physical quantity, and is a true scalar since the trace

of a tensor remains invariant under coordinate transformations. Note that although the

definition is phrased in terms of the normal stresses on surfaces pointing in the x, y and z
directions, it can be shown that pm  as defined in (38) is in fact equal to the average normal

compressive stress on the surface of a sphere centered on the point in question, in the limit

as the sphere's radius approaches zero (see G. K. Batchelor, An Introduction to Fluid

Mechanics, Cambridge University Press, 1967, p.141 ff).

General       form        of       the       stress       tensor       and       the       second        viscosity

Expressions similar to (37) are obtained for yy  and zz , except that vx x  is

replaced by vy y  and vz z , respectively.  From these expressions and (22) for the off-
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diagonal terms, it is evident that all the terms of the Newtonian stress tensor can be

represented by the equation

  
ij = − pm +

2

3
∇ ⋅v v 

 
 

 
 ij +

vi

x j

+
v j

x i

 

 
  

 
 (39)

where

ij  = 1    if  i=j

      = 0   if  i j

is the Kronecker delta. Note that (39) represents any single component of the tensor, and

no sum is implied in this equation when one writes down the general form of the diagonal

terms by setting j=i .

The mechanism whereby stress is exerted by one fluid region against another is

actually a molecular one. An individual molecule in a fluid executes a random thermal

motion, bouncing against other molecules, which is superposed on the mean drift motion

associated with flow. Normal stress on a surface arises from average momentum transfer

by the fluid molecules executing their random thermal motion, each molecule imparting an

impulse as it collides with the surface and rebounds. Normal stress is exerted even in a

static, non-deforming fluid. Shear stress arises when there is a mean velocity gradient in

the direction transverse to the flow. Molecules which move by random thermal motion

transverse to the flow from a higher mean velocity region toward a lower mean velocity

region carry more streamwise momentum than those moving in the opposite direction, and

the net transfer of the streamwise molecular momentum manifests itself as a shear stress on

the macroscopic level at which we view the fluid.

The molecular theory of the shear viscosity coefficient is quite different for gases

and liquids.  In gases the molecules are sparsely distributed and spend most of their time in

free flight rather than in collisions with each other. In liquids, on the other hand, the

molecules spend most of their time in the short-range force fields of their neighbors (see for

example J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Liquids

Gases and Liquids). The shear viscosity is mainly a function of temperature for both gases

and liquids, the dependence on pressure being relatively weak. There is, however, one big

difference between gases and liquids:  the viscosity of gases increases with temperature,

while the viscosity of liquids decreases, usually at a rate much faster than the increase in

gases. The viscosity of air, for example, increases by 20% when temperature increases
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from 18oC to 100oC. The viscosity of water, on the other hand, decreases by almost a

factor of four over the same temperature range.

  Equation (39) contains only a single empirical coefficient, the shear or ordinary

coefficient of viscosity µ. A second coefficient is, however, introduced in our quest for a

complete set of flow equations when we invoke the fluid's equation of state and are forced

to ask how the "thermodynamic" pressure which appears in that equation is related to the
mechanical pressure pm . The equation of state expresses the fluid's density as a function of

temperature and pressure under equilibrium conditions. The "thermodynamic" pressure

which appears in that equation is therefore the hypothetical pressure that would exist if the

fluid were in static equilibrium at the local density and temperature. Arguments derived

from statistical thermodynamics suggest that this equilibrium pressure may differ from the

mechanical pressure when the fluid is composed of complex molecules with internal

degrees of freedom, and that the difference should depend on the rate at which the fluid

density or pressure is changing with time. The quantity which provides the simplest

measure of rate of density change is the divergence of the velocity vector,   ∇ ⋅ v v , which

represents the rate of change of fluid volume per unit volume, as seen by an observer

moving with the fluid. It is customary to assume a simple linear relationship which may be

thought of as being in the same spirit as the original Newtonian postulates, but in fact rests

on much more tenuous experimental grounds:

  pm = p − ∇ ⋅v v . (40)

Here, λ is an empirical coefficient which happens to have the same dimension as the shear

viscosity µ, and is called the expansion viscosity (Batchelor, An Introduction to Fluid

Dynamics; alternative terms are "second coefficient of viscosity" and "bulk viscosity").

Thermodynamic second-law arguments show that λ must be positive. This implies that the

thermodynamic pressure tends to be higher than the mechanical pressure when the

mechanical pressure is decreasing (volume increasing,   ∇ ⋅ v v > 0), and lower than the

mechanical pressure when the pressure is increasing (volume decreasing,   ∇ ⋅ v v < 0).  In

other words, the thermodynamic pressure always tends to "lag behind” the mechanical

pressure when a change is occurring. The difference depends, however, on both the rate of

expansion (  ∇ ⋅ v v ) and the molecular composition of the fluid (via λ: see below).

Written in terms of the thermodynamic pressure p, the Newtonian stress tensor

reads
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ij = − p +

2

3
− 

 
 
 ∇ ⋅v v 

 
  

 
  ij +

vi

x j

+
v j

xi

 

 
  

 
 . (41)

The   ∇ ⋅ v v  term is associated with the dilation of the fluid particles. The physical

interpretation of   ∇ ⋅ v v   is that it represents the rate of change of a fluid particle's volume

recorded by an observer sitting on the particle, divided by the particle's instantaneous

volume.

It can be shown rigorously that =0 for dilute monatomic gases. For water  is
about three times larger than , and for complex liquids like benzene it can be over 100

times larger. Nevertheless, the effect on the flow of the term which involves   ∇ ⋅ v v   and the

expansion viscosity is usually very small even in compressible flows, except in very

special and difficult-to-achieve circumstances. Only when density changes are induced

either over extremely small distances (e.g. in the interior of shock waves, where they occur

over a molecular scale) or over very short time scales (e.g. in high-intensity ultrasound)

will the term involving   ∇ ⋅ v v  be large enough to have a noticeable effect on the equation of

motion. Indeed, attempts to study the expansion viscosity are hampered by the difficulty of

devising experiments where its effect is significant enough to be accurately measured. For

most flows, therefore, including most compressible flows where the fluid's density is

changing, we can approximate the stress tensor by

ij = −p ij +
vi

x j

+
v j

xi

 

 
  

 
 (42)

or

xx = −p + 2
vx

x

yy = −p + 2
vy

y

zz = −p + 2
vz

z

(43)

xy = yx =
vx

y
+

vy

x

 
 
  

 
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xz = zx =
vx

z
+

vz

x

 
 

 
 

yz = zy =
vy

z
+

vz

y

 
 
  

 
 .

Equations (42) and (43) are rigorously valid in the limit of incompressible flow (  ∇ ⋅ v v ≈ 0 .

That the term which involves  is usually negligible is fortunate, for experiments

have shown that the assumed linear relation between the mechanical and thermodynamic

pressures, (40), is suspect. The value of , when it is large enough to be measured

accurately, usually turns out to be not a fluid property but dependent on the rate of

expansion, i.e. on   ∇ ⋅ v v and thus on the particular flow field. By contrast, the Newtonian

assumption of linearity between the shear stresses and rates of shear strain is very

accurately obeyed in a large class of fluids under a wide range of flow conditions. All gases

at normal conditions are Newtonian, as are most liquids with relatively simple molecular

structure. For further discussion of the expansion viscosity, see for example G. K.

Batchelor, An Introduction to Fluid Mechanics, pp. 153-156, Y. B. Zeldovich and Y. P.

Razier, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol.

I, pp. 73-74, or L. D. Landau and E. M. Lifshitz, Fluid Mechanics, pp. 304-309. The

theory of the expansion viscosity is discussed in J. O. Hirschelder, C. F. Curtiss and R.

B. Bird's Molecular Theory of Gases and Liquids; some experimental values can be found

for example in the paper by L. N. Lieberman, Physical Review, Vol. 75, pp 1415-1422,

1949). For the expansion viscosity in gases, see also the editorial footnote by Hayes and

Probstein in Y. B. Zel'dovich and Y. P. Raizer's Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena, Vol. II, pp 469-470.
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6 The Navier-Stokes Equation

The Navier-Stokes equation is the equation which results when the Newtonian

stress tensor, (41), is inserted into the general equation of motion, (20):

  

Dvi

Dt
= −

xi

p +
2

3
− 

 
 
 ∇ ⋅ v v 

 
  

 
  + x j

v j

x i

+
vi

x j

 

 
  

 
 

 

 
 

 

 
 + Gi (44)

For constant  and , this equation reduces to a form which can be written in vector

notation as

  

D
v 
v 

Dt
= −∇p +

1

3
+ 

 
 
 ∇(∇ ⋅v v ) + ∇2 v v +

v 
G (45)

where

∇2 =
x2 +

y2 +
z2 (46)

is a scalar operator, operating in (45) on the vector   
v 
v , just like D/Dt on the left side is the

well-known scalar operator, operating on   
v 
v .

For incompressible flows with constant viscosity,

  

v j

x j

= ∇ ⋅ v v = 0 ,

and one obtains from (44) or (45)

Dvi

Dt
= −

p

xi

+
2vi

x j x j

+ Gi   , (47)

or, in vector form,

  
D

v 
v 

Dt
= −∇p + ∇2 v v +

v 
G  . (48)
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As mentioned above, (47) or (48) are in many cases very good approximations

even when the flow is compressible.  Written out fully in Cartesian coordinates, (47) reads

vx

t
+ vx

vx

x
+ vy

vx

y
+ vz

vx

z

 
 
  

 
= −

p

x
+

2vx

x2 +
2vx

y2 +
2vx

z2

 
 
  

 
+ Gx (49a)

vy

t
+ vx

vy

x
+ vy

vy

y
+ vz

vy

z

 
 
  

 
= −

p

y
+

2vy

x2 +
2vy

y2 +
2 vy

z2

 
 
  

 
 + Gy (49b)

vz

t
+ vx

vz

x
+ vy

vz

y
+ vz

vz

z

 
 
  

 
= −

p

z
+

2vz

x2 +
2vz

y2 +
2vz

z2

 
 
  

 
+ Gz (49c)

Appendix A gives the equations in cylindrical coordinates.

The Navier-Stokes equation of motion was derived by Claude-Louis-Marie Navier

in 1827, and independently by Siméon-Denis Poisson in 1831. Their motivations of the

stress tensor were based on what amounts to a molecular view of how stresses are exerted

by one fluid particle against another. Later, Barré de Saint Venant (in 1843) and George

Gabriel Stokes (in 1845) derived the equation starting with the linear stress vs. rate-of-

strain argument.

Boundary       conditions

A particular flow problem may in principle be solved by integrating the Navier-

Stokes equation, together with the mass conservation equation plus whatever other

equations are required to form a complete set, with the boundary conditions appropriate to

the particular problem at hand. A solution yields the velocity components and pressure at

the boundaries, from which one obtains the stress tensor components via equation (42) [or

(43)] and the stress vector from equation (11).

In the absence of surface tension, the boundary conditions consistent with the

continuum hypothesis are that (a) the velocity components and (b) the stress tensor

components must be everywhere continuous, including across phase interfaces like the

boundaries between the fluid and a solid and between two immiscible fluids. That this must

be so can be proved by applying mass conservation and the equation of motion to a small

disc-shaped control volume at a point in space, similar to the disc depicted in Fig. 1, and

considering the limit where the thickness of the disc go to zero. The proof for the continuity
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of ij  is essentially the same as the one for equation (4), with the requirement that the

equation of motion must be satisfied at every point for any orientation   
v 
n  of the surface.

Surface tension gives rise to a discontinuity in the normal stress at the interface

between two immiscible fluids.
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Appendix A
The Navier-Stokes Equations and Mass Conservation Equation
for Cylindrical Coordinates (r, , z) in Incompressible Flow

Fig. A.1: Cylindrical coordinate system

Navier-Stokes       equation        of         motion

vr

t
+ vr

vr

r
+

v

r

vr −
v2

r
+ v z

vz

z

 
 
  

 
=

−
p

r
+

1

r r
r

vr

r

 
 

 
 −

vr

r2 +
1

r 2

2vr
2 −

2

r2

v
+

2vr

z2

 
  

 
  + Gr (A.1)

v

t
+ vr

v

r
+

v

r

v
+

v rv

r
+ vz

v

z

 
 

 
 =

−
1

r

p
+

1

r r
r

v

r

 
 

 
 −

v

r2 +
1

r2

2v
2 +

2

r 2

vr +
2v

z2

 
  

 
  + G (A.2)

vz

t
+ vr

v z

r
+

v

r

v z + v z

vz

z

 
 

 
 =

−
p

z
+

1

r r
r

vz

r

 
 

 
 +

1

r2

2vz
2 +

2v z

z2

 
  

 
  + G z (A.3)



29

Stress       tensor       components

rr = −p + 2
vr

r

= − p + 2
1

r

v
+

vr

r

 
 

 
 

zz = −p + 2
vz

z

(A.4)

r = r = r
r

v

r
 
 

 
 +

1

r

vr 
  

 
  

z = z =
v

z
+

1

r

vz 
 

 
 

rz = rz =
vr

z
+

vz

r

 
 

 
 

Mass       conservation       equation

t
+

1

r r
r vr( ) +

1

r

( v )
+

( vz )

z
= 0 (A.5)


