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1  Basic Laws for Material Volumes

Material volumes and material particles

The behavior of material systems is controlled by universal physical laws.

Perhaps the most ubiquitous of these are the law of mass conservation, the laws of motion

published by Isaac Newton's in 1687, and the first and second laws of thermodynamics,

which were understood before the nineteenth century ended. In this chapter we will

review these four laws, starting with their most basic forms, and show how they can be

expressed in forms that apply to control volumes. The control volume laws turn out to be

very useful in engineering analysis1.

The most fundamental forms of these four laws are stated in terms of a material

volume. A material volume contains the same particles of matter at all times2.  A

particular material volume may be defined by the closed bounding surface that envelops

its material particles at a certain time. Since every point of a material volume’s bounding

surface moves (by definition) with the local material velocity   
r 
v  (Fig. 1), the shape of the

volume at all other times is determined by the laws of dynamics.

Fig. 1   A material volume moves with the material particles it encloses.

                                                
1 For a historical note on control volume analysis in engineering, see Chapter 4 of Walter G. Vincenti’s
What Engineers Know and How They know It, John Hopkins University Press, 1990.
2 A material volume is the same as a “closed system” in thermodynamics.
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Laws for material particles

The simplest forms of the four basic laws apply to an infinitesimal material
particle that is so small that the velocity   

v 
v , density , thermodynamic temperature , and

other intrinsic properties are essentially uniform within it. An observer moving with a

particle (“sitting on it,” as it were) would see its properties change with time only (Fig.

2).

Fig. 2 Motion of a material particle between time t and time t+∆t

For a material particle with infinitesimal volume V(t) , density t , and velocity   
v 
v , the

four laws have the following familiar forms:

Mass conservation

d

dt
V( ) = 0 (1)

This law asserts that the mass M = V  of a material particle remains invariant.

(The prefix  indicates quantities that are of infinitesimal size, and the prefix d refers to

changes that occur in the indicated property in time dt.)

Newton’s law of (non-relativistic) linear motion

  
( V)

d
v 
v 

dt
=

v 
F ,    or    

  
d

dt
v 
v V( ) =

v 
F (2)
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Newton’s law states that, relative to an inertial reference frame3, the product of a

particle’s mass and acceleration is at every instant equal to the net force   
v 
F (t)  exerted on

it by the rest of the universe, or alternatively, that the rate of change of a particle’s

momentum (a vector quantity) is equal at every instant to the force applied to the particle

by the rest of the universe. (Actually the law states that the rate of change of momentum

is proportional to the applied force, with the coefficient being universal, but in most

systems of measurement the universal coefficient is set equal to unity, which determines

the units of force in terms of those of acceleration and time.)

Newton’s law applied to angular motion

  
d

dt

v 
r × v 

v V( ) =
v 
r ×

v 
F  (3)

This law figures in rotary motion. The rate of change of a particle’s angular

momentum (the quantity in brackets on the left side of (3),   
v 
r (t)  being the particle’s

position vector) is at every instant equal to the net torque exerted on the particle by the

rest of the universe.  This is not a new law, but one that follows from Eq. (2). Equation

(3) is obtained by taking the cross product of   
v 
r (t)  and Eq. (2), using Eq. (1), and noting

that   d
v 
r dt × v 

v = v 
v × v 

v = 0. Like the law it is derived from, Eq. (3) is valid only in inertial

reference frames. Actually the law states that the rate of change of momentum is

proportional to the applied force, with the coefficient being universal, but in most

systems of measurement the universal coefficient is set equal to unity, which determines

the units of force in terms of those of acceleration and time.

First law of thermodynamics

 d( et V ) = W + Q (4)

The increase of a material particle’s total energy in a time interval dt  (et is its

total energy per unit mass, internal plus kinetic plus potential) is equal to the work W

done in the interval dt by forces exerted by the rest of the universe on the material

                                                
3 An inertial reference frame is one in which the particle would move at a perceptibly constant velocity if
all the forces acting on it were removed.
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volume’s boundary (that is, not counting work done by volumetric body forces), plus the

heat Q  added to the particle at its boundary during this interval. (Equation (4) is one

part of the definition of the quantity we call heat.)

Second law of thermodynamics

 d s V( ) ≥
Q

T
(5)

The increase of a particle’s entropy (s represents the particle’s entropy per unit

mass) in a time dt is greater than or equal to the heat added to the particle at its boundary

during this interval divided by the absolute (thermodynamic) temperature, T .4 The

equality sign applies in the limit of a reversible process.

Laws for finite material volumes

From Eqs (1)-(5), which apply to an infinitesimal material particle, we can derive

the laws for a finite material volume like the one sketched in Fig. 1. This is accomplished

by applying a particular law to each of the material particles that comprise the volume

under consideration, and summing.  In the limit of a continuum, the sum can be viewed

as an integral over the volume of material properties which are expressed as fields (that

is, as functions of position   
v 
r  and time t ), consistent with the Eulerian way of describing

material flows.

The result is the following set of rate equations5 for a material volume’s mass,

momentum, energy, and entropy:

Mass conservation

  

d

dt
(
v 
r ,t)dV = 0

MV (t )
∫ . (6)

                                                
4 According to the Second Law the temperature in Eq. (5) should be that of the “reservoir” from which the
heat is supplied to the material particle. In this case the heat comes from the material that bounds the
infinitesimal particle, where the temperature differs infinitesimally from the particle’s own  average
temperature T.
5 The usual term “conservation equation” is a bit of a misnomer, since mass is the only one of these
quantities that is actually conserved.
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The mass contained in a material volume remains invariant.    (
v 
r ,t) is the

material’s density field, dV=dxdydz represents a volume element inside the material

volume, and MV(t) under the integral sign signifies integration over the material volume

at the instant t.

Motion (linear momentum)

 
  

d

dt
(
v 
r ,t)

v 
v (

v 
r ,t)dV =

v 
F MV(t)

MV (t )
∫ . (7)

This is Newton’s law of motion: The rate of increase of a material volume's

momentum, evaluated by integrating the local momentum per unit volume   
v 
v  over the

material volume, is at every instant equal to the vector sum   
v 
F MV(t) of all the forces

exerted on the material volume by the rest of the universe. This force includes body

forces acting on the material within the volume and surface forces acting at the boundary,

but not the forces exerted between particles within the volume, which cancel each other

out when the sum over all the constituent parts is taken (action of one particle on another

is exactly opposed by the reaction of the other on the first). It is understood that Eq. (7)

applies only in inertial (unaccelerating) reference frames under non-relativistic

conditions.

Motion (angular momentum)

  

d
dt

v 
r × v 

v dV
MV ( t )
∫ =

v 
T MV (t) = v 

r i
i

∑ ×
v 
F i (8)

This equation is obtained by summing the angular momentum law for a material

particle, Eq. (3), over all the particles that comprise a finite material volume. The law

states that the rate of increase of a material volume’s angular momentum, expressed as

the integral over the volume of the angular momentum per unit volume, is equal to the

vector sum   
v 

T MV (t) of all torques exerted by the rest of the universe on the material

volume. This form of the law assumes that the torques exerted between two particles

within the volume are equal and opposite, or zero, which is the case except in rare

circumstances. Note again that Eq. (8) is not a new law, but a corollary of Newton’s law

of motion and subject to the same restrictions.
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First law of thermodynamics

d

dt
et

MV ( t )
∫ dV = ˙ Q MS (t) + ˙ W MS(t), (9)

This law is obtained by summing Eq. (4) over all the particles that comprise the

material volume and noting that the particle-to-particle heat transfer and work terms

cancel for all particles inside the material volume when the sum is taken (what comes

from one goes into the other).
The law states that the rate of increase of a material volume's energy ( et  is the

total energy per unit mass—internal plus kinetic plus gravitational) is equal to the sum of

two “source terms” which represent interactions with the rest of the universe at the

volume’s boundary. The first source term is the net heat flow rate into the material

volume across its bounding surface

  

˙ Q MS (t) = − v 
q ⋅

v 
n dA

MS (t)
∫  , (10)

where

  
v 
q = −k∇T (11)

is the conductive heat flux vector at a point on the material volume’s boundary, k isthe

material’s thermal conductivity, T is its local thermodynamic temperature,   
v 
n  is the

outward-pointing unit vector at the bounding surface, and dA is an elemental area on the

bounding surface. The symbol MS(t) denotes integration over the closed bounding

surface of the material volume at time t. The second source term in (9) is the rate at

which work is done by the rest of the universe on the material volume at its boundary.

This may be evaluated as

  

˙ W MS (t) =
v 

⋅ v v dA
MS(t )
∫ (12)

were   
v 

 is the vector stress exerted on the boundary by the rest of the universe and   
v 
v  is

the material’s local velocity at dA. The quantity   
v 
dA  is the force exerted by the rest of

the universe on the surface element dA of the control volume.
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Equation (9) thus has the form

  

d
dt

et
MV ( t )
∫ dV = − v 

q ⋅ v 
n dA

MS( t )
∫ +

v 
⋅ v v dA

MS( t )
∫ (13)

Second law of thermodynamics

  

d

dt
sdV ≥ −

v 
q ⋅ v 

n dA

T
MS (t)
∫

MV ( t )
∫ (14)

The rate of increase of a material volume’s total entropy is greater than or equal to

the sum of all the local heat inflows at the boundary when each contribution is divided by

the local thermodynamic (absolute) temperature at the point on the material volume’s

surface where the transfer takes place.

This law provides a bounding value of the rate of entropy increase, but not the

actual value, and is less useful in dynamics than the other laws. It does, however, have

some important uses in dynamics. One can for example discard from the dynamically

possible solutions (those that satisfy mass conservation and the equation of motion) those

that are unrealizable because they violate the Second Law, and one can predict the

entropy change in limiting cases of negligible dissipation, where the equality sign applies.

2 The Transformation to Control Volumes

The control volume

Equations (6)-(8) and (13)-(14) state universal laws that apply to all material

distributions.  They are, however, in a form that makes them ill suited for applications.

Each equation contains a term of the form

  

d

dt
(
v 
r ,t)dV

MV (t )
∫ (15)

in which a quantity   
r 
r ,t  that represents something per unit volume—mass, momentum,

energy, or entropy—is first integrated over a material volume and the result then

differentiated with respect to time. When the material is flowing and deforming, the
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volume’s boundary moves with it and is not known as a function of time until the

problem is solved. It seems, therefore, that one must know the solution before one can

apply these laws to find the solution.  Clearly, we need to find a way of applying the

basic laws to systems of our own choice, that is, to “control volumes.”

A control volume is an arbitrarily defined volume with a closed bounding surface

(the control surface) that separates the universe into two parts: the part contained within

the control volume, and the rest of the universe. The control surface is a mental construct,

transparent to all material motion, and may be static in the chosen reference frame, or

moving and expanding or contracting in any specified manner. The analyst specifies the
velocity   

v 
v c (

v 
r ,t)  at all points of the control surface for all time.

We shall show next how the universal laws for a material volume can be rewritten

in terms of an arbitrarily defined control volume. This opens the way to the application of

the integral laws in engineering analysis.

Rate of change of a volume integral over a control volume

We begin by considering a time derivative like Eq. (15) for a control volume

rather than a material volume. The time rate of change of the integral of some field

quantity   (
v 
r ,t) over an arbitrarily defined control volume CV(t) is by definition

  

d

dt
dV

CV( t )
∫ = lim

∆t →0

(
v 
r ,t + ∆t)dV

CV ( t +∆ t )
∫ − (

v 
r ,t)dV

CV ( t)
∫

∆t
.   (16)

The first integral on the right hand side is evaluated at the advanced time over the

advanced volume, and the second is evaluated at time t over the volume at time t (Fig. 3).
At any point   

v 
r  we can write for small t

  
(
v 
r ,t + ∆t) = (

v 
r ,t) +

t
∆t . (17)

Inserting this into Eq. (15) we see immediately that

   
  

d

dt
dV

CV( t )
∫ =

(
v 
r ,t)

t
dV

CV (t )
∫ + lim

∆t →0

(
v 
r ,t)dV

CV (t +∆t )
∫ − (

v 
r ,t)dV

CV ( t)
∫

∆t
(18)
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where the integrals on the right are evaluated based on the values of / t and   at time t.

In the limit t→0, the difference between the two volume integrals in the second term

can be evaluated (see Fig. 3) by means of an integral over the material surface at time t:

  
(
v 
r ,t)dV

CV ( t +∆t )
∫ − (

v 
r ,t)dV

CV (t)
∫ = (

v 
r ,t)

v 
v c

CS( t )
∫ ∆t ⋅

v 
n dA  . (19)

Here   
v 
v c (

v 
r ,t)  is the velocity of the control surface element dA,   

v 
n  is the outwardly-

directed unit normal vector associated with dA, and   
v 
v c ⋅

v 
n ∆tdA  is the control volume size

increase in time t due to the fact that the surface element dA has moved in that time

interval.  The integral on the right side is taken over the entire (closed) bounding surface

CS(t) of the control volume.

Fig. 3  Motion of a control volume between t and t+∆t for small ∆t.

Substituting Eq. (19) into Eq. (18), we obtain for an arbitrarily chosen control

volume CV(t),

  

d

dt
dV =

CV( t )
∫

(
v 
r ,t )

t
dV + (

v 
r ,t)

v 
v c ⋅

v 
n dA

CS( t )
∫

CV (t)
∫ (20)

Rate of change of a volume integral over a material volume

The corresponding equation for a material volume MV(t) can be obtained simply

by noting that a material volume is a control volume every point of which moves with the

material velocity.   Equation (20) thus applies to a material volume if we set the control
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volume velocity equal to the material velocity,  
r 
v c =

r 
v , and identify the limits of

integration with the material volume.  This yields for a material volume

  

d

dt
dV =

MV (t )
∫

(
v 
r ,t)

t
dV + (

v 
r ,t)

v 
v ⋅

v 
n dA

MS ( t )
∫

MV ( t )
∫ (21)

Reynolds' material-volume to control-volume transformation theorem

Reynolds’ transformation theorem provides a recipe for transforming the

fundamental laws in Eqs. (6)-(8) and (13)-(14) to control volumes. The transformation

theorem is obtained by considering a control volume at time t and the material volume

which coincides with it at that instant.  The control volume CV(t) is chosen arbitrarily by

defining its closed bounding surface CS(t).  The material volume is comprised of all the

matter inside the control volume at time t (Fig. 4).  The two volumes will of course

diverge with time since the material volume wafts off with the particles to which it is

"attached" and the control volume moves according to our specification. This is of no

consequence since we are considering only a “frozen” instant when the two volumes

coincide.

Fig. 4 The control and material volumes in the transformation theorem

We apply Eq. (20) to our CV and Eq. (21) to the MV that coincides with it at time

t , and note that because the volumes coincide, the integrals on the right-hand side of Eq.

(21) may be evaluated over either the CV instead of the MV.  This yields two alternative

equations for the time derivative of an integral over a material volume, expressed in

terms of a CV that coincides with the material at the time involved:
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Form A
  

d

dt
dV =

d

dt
CV (t )
∫

MV ( t )
∫ dV + (

r 
v −

r 
v c ) ⋅

r 
n dA

CS (t)
∫ (22)

Form B
  

d

dt
dV =

t
CV ( t)
∫

MV( t )
∫ dV +

r 
v ⋅

r 
n dA

CS (t )
∫ (23)

Equation (22) is obtained by subtracting Eq. (20) from Eq. (21). Equation (23) is Eq. (21)

with the integrals referred to the CV instead of the MV, the two being coincident. Recall
that   

r 
v  is the local material velocity,   

r 
v c  is the local control surface velocity at the surface

element dA, and   
r 
n  is the outward-pointing unit normal vector associated with dA..

Both forms A and B are valid for arbitrarily moving and deforming control

volumes (i.e. control volumes that may be expanding, translating, accelerating, or

whatever), and for unsteady as well as steady flows.  The two forms express exactly the

same thing, but do the bookkeeping in different ways.

 Remember that  represents something per unit volume. Both forms express the

material-volume time derivative on the left as a sum of two terms that refer to the control

volume that coincides with the material volume at the instant t. In form A, the first term
on the right is the rate of change of the amount of  inside the control volume at time t

(the volume integral is evaluated first, then the time derivative), and the second term is

the net rate of outflow of  across the control volume's boundary.

 In form B, the first term on the right is the volume integral of the partial time
derivative of  over the control volume at time t (the CS is held fixed at its position at

time t while the integration is performed). The second term accounts for the fact that the

material volume’s boundary (on the left) does not in fact maintain the shape it has at time

t, but envelops more volume (and more of the quantity ) when it expands, every point

moving with the local material velocity   
v 
v . The control surface velocity does not enter at

all in form B.

We shall see that Form A is usually more convenient in unsteady applications

than Form B. This is particularly true in cases where t  is singular at some surface

inside the control volume (as it is at a moving flame front inside a solid-propellant rocket,

for example, if  is the material density distribution in the rocket), in which case it is

difficult to evaluate the volume integral in Form B. The volume integral in From A, on

the other hand, can be calculated straightforwardly and then differentiated with respect to

time.
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3  Basic laws for control volumes

The basic physical laws expressed by Eqs (6)-(8) and (13)-(14) in material-

volume terms are transferred to a control volume as follows.  We transform the left sides
by setting  equal to either ,   

v 
v ,   

v 
r × v 

v , et , or s,  in form A or form B of Reynolds’

transformation theorem [ Eqs. (22) and (23)]. The right hand sides are transformed by

noting that since the MS and CS coincide at the instant being considered (see Fig. 4), the

force, torque, and heat flow terms on the right hand side of Eqs (7)-(8) and (13)-(14) are

the same for the CV as for the MV.  Note, however, that the rate at which work is being

done on the CS is not equal to the rate at which work is being done on the MS because

these surfaces move at different velocities.

Two alternative forms are obtained for each equation, depending on whether

Form A [Eq. (22)] or form B [Eq. (23)] of the transformation theorem is used. The

alternative forms are expressions of the same physical law, stated in somewhat different

terms.  Both apply to any control volume at every instant in time no matter how the

control surface is moving and deforming, provided the reference frame is one where the

basic equations apply.

We remind the reader (see Fig. 3) that in what follows,

  vn =
r 
v ⋅

r 
n = vcos  (24)

is the outward normal component of the material’s absolute velocity at the control
surface,  being the angle between   

r 
v  and the outward-pointing normal unit vector   

r 
n , and

  vrn = (
r 
v −

r 
v c ) ⋅

r 
n = vn − vcn (25)

is the outward normal component of the material's velocity relative to the control surface,
vcn  being the outward normal component of the control surface's velocity.

Mass conservation

Setting =  in Eqs. (22) and (23), we transform Eq. (6) into two alternative

forms for a CV:
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Form A
d

dt
dV

CV( t )
∫ + vrndA = 0

CS(t )
∫ (26A)

Form B
t

CV ( t )
∫ dV + vndA = 0

CS ( t )
∫ (26B)

Equation (26A) states the mass conservation principle as follows: The rate of

increase of the mass contained in the CV, plus the net mass flow rate out through the

(generally moving) CS, equals zero at every instant.

Equation (26B) states the same principle in different but equally correct terms:

The rate of increase of the mass contained in the fixed volume defined by the control

surface at time t, plus the net mass outflow rate through the fixed bounding surface of that

volume, equals zero at all times.

Linear momentum

Putting   = v 
v  in Eqs. (22) and (23) and substituting into (7), we obtain the

following alternative forms for the equation of motion applied to a CV:

Form A
  

d

dt
v 
v 

CV (t )
∫ dV + v 

v v rndA =
v 
F CV (t)

CS (t)
∫ (27A)

Form B
  

(
v 
v )

t
CV ( t )
∫ dV + v 

v v ndA =
v 
F CV (t)

CS (t )
∫  (27B)

Here,   
v 
F CV (t) is the vector sum of all the forces exerted at time t by the rest of the universe

on the control volume, including volumetric forces and stresses exerted on the control

volume’s boundaries. For a continuous distribution of surface and body forces,

  

v 
F CV (t) =

v 
dA +

v 
G dV

CV
∫

CS
∫    (28)

Equation (27A) states that the rate at which the linear momentum contained in the

CV increases with time, plus the net flow rate of linear momentum out through the

control surface, is equal at every instant to the force exerted by the rest of the universe on

the material within the control surface.
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Equation (27B) states it in different terms: The rate of increase of the momentum

contained in a fixed volume identical with the control surface at time t, plus the net mass

outflow rate through the fixed bounding surface of that volume, is equal at all times to the

force exerted by the rest of the universe on the material in the control volume.

Angular momentum

Setting   =
v 
r × v 

v  in either (22) or (23) and substituting into (8) yields the

angular momentum theorem for a CV in two alternative forms:

Form A
  

d

dt
(

v 
r × v 

v )
CV(t )
∫ dV + (

v 
r × v 

v )vrn

CS( t )
∫ dA =

v 
T CV (t) (29A)

Form B
  t

v 
r × v 

v ( )
CV (t )
∫ dV + (

v 
r × v 

v )vn

CS (t )
∫ dA =

v 
T CV(t) (29B)

Here   
v 
r  is the position vector from an arbitrary origin,  

v 
T CV(t)  is the sum of all the torques

(relative to the chosen origin) that the rest of the universe exerts on the control volume,

including those resulting from both surface forces (pressure and shear) and volumetric

body forces (e.g. gravity).  An inertial reference frame is presumed. For a continuous

distribution of surface and body forces,

  

v 
T CV(t) =

v 
r ×

v 
dA +

v 
r ×

v 
G dV

CV
∫

CS
∫ . (30)

where   
v 

 is the vector stress exerted on the boundary element dA by the rest of the

universe, and   
v 

G  is the body force exerted by the rest of the universe on unit mass of

material within the volume.

Equation (29A) states the following: The rate at which the angular momentum

inside the control volume increases with time, plus the net rate at which angular

momentum flows out of the control surface, is equal to the net torque exerted by the rest

of the universe on the matter in the control volume (on the boundary as well as on the

mass within).  The reader will be able to interpret (29B) based on the comments been

made above with reference to (26B) and (27B).
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First law of thermodynamics (energy equation)

Setting = et  in Eqs. (22) and (23) and substituting into (13), we obtain two
forms of the first law for a CV:

Form A
  

d

dt
etdV + etvrndA = − v 

q ⋅
v 
n dA

CS (t )
∫ +

v 
⋅ v 
v dA

CS (t )
∫

CS( t )
∫

CV( t )
∫  (31A)

Form B
  

( et )

t
dV + etvndA = − v 

q ⋅
v 
n dA

CS (t )
∫ +

v 
⋅ v 
v dA

CS (t )
∫

CS ( t)
∫

CV ( t )
∫ (31B)

Equation (31A) states that the rate at which the total energy contained in the CV

increases with time, plus the net rate at which total energy flows out of the CS, is equal to

the sum of two terms on the right.  The first term is the rate at which heat is conducted

into the CV via the control surface.  The second is the rate at which the rest of the

universe does work on the material volume whose bounding surface coincides with the

CS at the instant in question. The work done at the control surface,

  

˙ W CS(t) =
r 

⋅
r 
v cdA

CS(t )
∫  , (32)

depends on the control surface velocity distribution, which is chosen at will by the

analyst and obviously has no place in a universal law.

Second law of thermodynamics

 Form A
  

d

dt
sdV + svrndA ≥ −

v 
q ⋅ v 

n 

T
dA

CS (t )
∫

CS (t )
∫

CV( t )
∫  (33A)

Form B
  

( s)

t
dV + svndA ≥ −

v 
q ⋅ v 

n 

T
dA

CS (t )
∫

CS (t )
∫

CV ( t )
∫ (33B)

Equation (33A) states that the rate of increase of the entropy contained in the CV

(s is the entropy per unit mass), plus the net rate of entropy convection out of the control

surface, never exceeds the integral over the control surface of the normal heat influx

divided by the local absolute temperature.
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4 Procedure for Control Volume Analysis

The application of any one of the integral laws involves consideration of the

following nine steps:

Step 1

Choose the reference frame in which the problem is viewed and velocity and

other properties are measured.  If Newton’s law is involved in the problem, the reference

frame must be an inertial (non-accelerating) frame.

Step 2

Choose your control volume by specifying its (closed boundin surface at some

instant (e.g. t=0) and at all times thereafter. The control surface must be closed. It may be

multiply connected.  It may move in the chosen reference frame and expand and distort as

it does so. All this is your choice. If the CS runs parallel to a fluid-solid interface, take

care to specify whether your control surface is just on the fluid side, or just on the solid

side.  It must be on one side or the other, so that quantities like ,   
r 
v , e t, etc. have well

defined values.

Step 3

Write down the integral law that you wish to apply.

Step 4

Identify the values of the properties (  ,
v 
v ,

v 
v c ,et ,

v 
,
v 
q , and s, or whichever of them

figure in your problem) at every element dA of the control surface and calculate the

surface integrals that appear in your integral equations. Select the control volume so that

the bounding surface passes as much as possible through regions where you know the

properties, or can easily deduce them. Wherever you don’t know some quantities,

introduce them as unknowns, expecting to determine them as you proceed.

Step 5

Identify the values of ,   
r 
v ,   

v 
,et ,s  and   

v 
G  at every volume element dV inside the

control volume, and evaluate the volume integrals in your integral equations.

Step 6



18

Calculate the time derivative of the volume integral that appears on left-hand side

of your integral equation.

Step 7

From steps 4, 5 and 6, substitute into your integral equations.

Step 8

If you wish to solve a practical problem using the control volume theorems, you

must write down enough equations to ensure that their number equals the number of

unknowns in the equations. The four integral laws that we have described are totally

general and rigorous, but these laws themselves will not provide enough equations to

solve for the unknowns. You will need to draw on other physical laws (e.g. gravitational

theory to characterize the external body force field) and constitutive equations (e.g. the

thermodynamic equations of state). Above all you will need to make simplifying

approximations wherever they are appropriate. Uniform flow conditions over any given

cross-sections (“quasi-one-dimensional flow”) is a typical engineering approximation, for

integral relations by themselves provide no information about velocity distributions. If

you you have reason to believe that the flow may be approximated as inviscid, you

invoke Bernoulli’s equation. If based on the equation of state you think density varies

little, you write =constant. (Note: Bernoulli’s equation is derived from Newton’s

equation of motion, just like the linear momentum theorem. By invoking Bernoulli, are

we not simply writing down the same equation twice? We are not. The linear momentum

equation applies generally. Bernoulli’s equation introduces the additional information

that the flow is inviscid.)

Step 9

Solve for the unknowns.

Step 10

Check, by suitable order-of-magnitude estimates, that your solution is consistent

with any approximations that you made.


