MIT 18.06 Makeup Exam 3 Solutions, Spring
2022
Johnson

Problem 1 (847+8-+15 points):

A is a Hermitian matrix with eigenvectors (each normalized to length ||z || =
1) given by the columns of the following matrix (shown to 3 decimal places):

0.236  0.247 0.676  0.154  0.634

—0.548 —-0.495 0.094 0.653  0.138
X = ( Ty Ty X3 Ty Xj ) ~ | 0765 —0.582 —-0.164 0.211 0.066

0.117 —-0.078 0.655  0.100 —0.736

—-0.211 -0.591 0.279 —0.703 0.182
The corresponding eigenvalues are A\; = 5, Ao =4, A3 = 3, \y = 2, and A\5 = 1.
Using this matrix A, we solve a system of ODEs:

for some initial condition y(0) to find y(¢) and some real or complex number
a.

(a) What are the eigenvalues of X7 X?

(b) Write the solution as y(t) = ePly(0) for some matrix B: give a formula
for B in terms of A and a.

(¢) Give a value of « that would cause the solution y(t) to decay to zero for
all initial conditions z(t).

(d) For a = —5, give a good approximation for y(100) if
0

y(0) =

o= oo

You can leave your solution in the form of some vector times some coeffi-
cient(s) without carrying out the explicit multiplications, but give
all the numbers in your vector and coeflicients to 3 decimal digits.



Solution

(a)

Since A is Hermitian and the eigenvalues are distinct, the corresponding
eigenvectors are orthogonal, and furthermore you were told that they are
normalized to unit length, and so the columns of X are orthonormal.

Hence X7 X = I, which has only one eigenvalue (with multiplicity
5).

%’:(AJrozI)yso B=A+al|

The solutions eP'y(0) are always decaying if the eigenvalues of B have
negative real parts. Since the eigenvalues of B = A + ol are \y + «
where the Ay are the given eigenvalues of A then any « with R[a] < —5
would suffice. For example, « = —6 or « = —6 + 1.

For a = —5, the eigenvalues of B are 0, —1,—2, —3, —4, so for a large ¢ the
eigenvalues are dominated by the x; component, whereas the other eigen-
vector components decay exponentially to zero. More explicitly, imagine
expanding y(0) in the basis of eigenvectors:

y(O) = XC =C1T =+ CoXo + c3x3 + CaTy 4 55,
in which case the solution just multiplies each term by the corresponding
At
et
y(t) = c11 + coe”'wa + cse P as + cae M ay + cse s,

For t = 100, the decaying terms are negligible and we get
y(100) = c121.
But, since this is an orthonormal basis, we can get ¢; by projection:
c1 =27 y(0) = 0.117

and hence

0.236
—0.548
y(100) ~ 0.117z; = 0.117 | 0.765
0.117
—0.211

Notice that essentially no arithmetic was required. If you tried to solve
Xec = y(0) for ¢ by Gaussian elimination, without exploiting the fact that
X is orthonormal (so ¢ = X7y(0)), you would have had a difficult time!



Problem 2 (848488 points):

A is the matrix

[\
— RN =

(a) What are the eigenvalues of A?
(b) What is det((A + 21)%)?

(c) If you solve % = — AT Az for x(t) given some randomly chosen initial

condition z(0), would you typically expect the solutions z(t) to diverge,
decay to zero, approach a nonzero constant vector, or oscillate
forever as t — 00?

(d) If you compute z,, = (3A— 2I)"x for some randomly chosen initial vector
zg, would you typically x,, to diverge, decay to zero, approach a
nonzero constant vector, or oscillate forever as n — co?

Solution

(a) The matrix A is upper triangular and so you can read the eigenvalues off
of the diagonal entries: ’ A=-1,3,0,2,1 ‘

(b) The determinant is the product of the eigenvalues, and the eigenvalues of
(A+21)2 are (\+2)? = 1,25,4, 16, 9. Their product is 1 x 25 x4 x 16 x9 =
100 (160—16) = 100x 144 = . (This is a lot easier than computing
(A +21)? first!)

(c) This hinges on the signs of the (real) eigenvalues of —ATA. Any
matrix of the form —AT A is negative semidefinite for any A, so its eigen-
values can be < 0. Whether it has a 0 eigenvalue depends on N(—AT A) =
N(ATA) = N(A), but we know that A has an eigenvalue A = 0 from above
and so it must have a nonzero vector in its nullspace. Hence —A7 A must
also have a zero eigenvalue. Hence, the solutions z(t) = e_ATAtgc(O)7 if
we expand in the basis of eigenvectors of —AT A, contain terms that decay
exponentially (corresponding to the negative eigenvalues), but also one
term that is constant (the A\ = 0 term). Hence, we would typically ex-
pect the solutions to approach a nonzero constant vector as t — oo.
(The only exceptions would arise when z(0) is orthogonal to the A = 0
eigenvector, in which case the solution would decay to zero.)

(d) This kind of matrix-power recurrence depends on the magnitudes of

the eigenvalues of %A — %I, which are % = —1,%,—%,0,—%. All of

these have magnitudes < 1 except for —1 . So, if you expand x in



the basis of eigenvectors of A (which is diagonalizable since its eigen-

values are distinct), then the terms in z, = (34 — 2I)"z will go as

(=)™, (3)",(=2)",0", and (—3)". For large n, this is dominated by
(—=1)™, which oscillates forever.



Problem 3 (6+6+46+6-+6-+6 points):

For each of the following, say what must be true of the eigenvalues \ of A
(which you can assume is diagonalizable) if:

A=Dtg|| — oo for some x as t — oo.

(A—D)t

lle x|| = oo for all x # 0 as t — oo.

(I + A%)"z| does not diverge for any x as n — oo.

A is a Markov matrix but A"z does not approach a constant vector as
n — oo for some initial x.

(e) A?is Hermitian.

Solution

(a) A — I must have at least one eigenvalue with a positive real part to get
a diverging solution, so A must have at least one eigenvalue with a
real part > 1.

(b) To get only diverging solutions here, every eigenvalue of A—I must have a
positive real part (since we can just choose x to be any of the eigenvectors).
So all of the eigenvalues of A must have real parts > 1.

(c) To get no diverging solutions, then I + A% must have eigenvalues with
magnitude < 1. If X is an eigenvalue of A, then I + A? has an eigenvalue
1+ \2. Hence, we must have |1 + \?| < 1 for every eigenvalue of A.

(d) If it does not approach a constant vector, then the only other possibility
is an oscillating solution. (Markov matrices cannot have diverging A"
because all their eigenvalues have magnitude < 1). This arises when A
has at least one eigenvalue A # 1 with |A\| = 1 (i.e. somewhere on the
complex unit circle but # 1, such as —1 or 7).

(e) The eigenvalues of A2 must be purely real, but these are the squares A2 of
the eigenvalues of A. So, each eigenvalue X of A must be the £square root
of a real number, which is either purely real or purely imaginary
(with either sign).



