
MIT 18.06 Exam 3 Solutions, Spring 2022
Johnson

Problem 1 (10+10+10 points):
The matrix

A =

(
3 1
2 2

)
has an eigenvalue λ1 = 1 and corresponding eigenvector x1 =

(
1
−2

)
.

(a) What is the other eigenvalue λ2 and a corresponding eigenvector x2 =(
1
??

)
?

(b) B is a 2×2 matrix such that Bxk = (1−λk+λ2k)xk for the two eigenvectors
(k = 1, 2). What is B?

(c) What is A3/2

(
1
−1

)
?

Solution:
(a) trace(A) = 3+2 = 5 = λ1+λ2, so the other eigenvalue is λ2 = 5−λ1 = 4 .

To find a corresponding eigenvector, we need to solve

(A− 4I)x2 =

(
−1 1
2 −2

)
x2 = 0 .

By insspection, the second column is minus the first, so a solution is

x2 =

(
1
1

)
or any multiple thereof (but you were requested to scale x2

so that the first component = 1).

(b) Bxk = (1− λk + λ2k)xk is an eigen-equation: B has the same eigenvectors
as A but with the eigenvalues replaced by 1− λk + λ2k. That means that

B = I−A+A2 =

(
1

1

)
−
(

3 1
2 2

)
+

(
3 1
2 2

)(
3 1
2 2

)
︸ ︷︷ ︸ 11 5

10 6


=

(
9 4
8 5

)
.
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You could have also solved this by diagonalization: B = X

(
1− λ2 + λ22

1− λ2 + λ22

)
X−1

where X =
(
x1 x2

)
is the matrix of eigenvectors, but this may be more

work since you have to compute X−1, unless you happen to remember the
formula for the inverse of a 2× 2 matrix.

(c) The key trick, as usual, is that A3/2 multiplies an eigenvector (where A
acts like a scalar) by λ3/2. So, to apply A3/2 to an arbitrary vector, we
just expand that vector in the basis of the eigenvectors and then multiply
each term by λ3/2. Here,(

1
−1

)
= c1

(
1
−2

)
︸ ︷︷ ︸

x1

+c2

(
1
1

)
︸ ︷︷ ︸

x2

=

(
1 1
−2 1

)
︸ ︷︷ ︸

X

(
c1
c2

)
.

Proceeding by Gaussian elimination, we add twice the first row to the
second row to obtain:(

1 1
0 3

)
︸ ︷︷ ︸

U

(
c1
c2

)
=

(
1
1

)
=⇒ c2 = 1/3, c1 = 1− 1/3 = 2/3 .

(Yes, the answer requires the dread “fractions.” Sorry!) Hence

A3/2

(
1
−1

)
=

2

3
λ
3/2
1 x1+

1

3
λ
3/2
2 x2 =

2

3

(
1
−2

)
+

8

3

(
1
1

)
=

(
10/3
4/3

)
.
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Problem 2 (7+7+7 points):

A is a square matrix such that N(A− I) is spanned by
(

1
2

)
and N(A− 5I)

is spanned by
(

1
−2

)
(a) Without much calculation, you can tell that A is / is not (choose 1)

Hermitian because ________________.

(b) What is A? You can leave your answer as a product of matrices and/or
matrix inverses without multiplying/inverting them.

(c) What is eA+I? You can leave your answer as a product of matrices
and/or matrix inverses without multiplying/inverting them, but your
answer should not have exponentials of matrices or infinite series.

Solution:
(a) The two nullspace vectors are eigenvectors of A with λ = 1 and 5, respec-

tively, but they are clearly not orthogonal, so A is not Hermitian.

(b) From the dimensions of the vectors, A must be a 2× 2 matrix, and we are
given two eigenvectors for two eigenvectors. Hence, it is diagonalizable
and

A = XΛX−1 =

(
1 1
2 −2

)(
1

5

)(
1 1
2 −2

)−1

.

You weren’t required to simplify it further, but it turns out that A =(
3 −1
−4 3

)
if you work it all out.

(c) eA+I has the same eigenvectors as A, with the eigenvalues replaced by
λ→ eλ+1. So, we can again use the diagonalization

eA+I =

(
1 1
2 −2

)(
e2

e6

)(
1 1
2 −2

)−1

.
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Problem 3 (4+4+4+4+4+4 points):
For each of the following, say whether it must be true, it may be true, or it
cannot be true. No justification needed.

(a) If a matrix is diagonalizable, it must/may/cannot have orthogonal eigen-
vectors.

(b) M is a Markov matrix. If Mnx converges to a steady state as n→∞ for
any vector x, the M must/may/cannot be a positive Markov matrix
(i.e. have all entries > 0).

(c) If a matrix A is not diagonalizable, then det(A−λI) must/may/cannot
have repeated roots.

(d) If Anx goes to zero as n → ∞ for some x, then A must/may/cannot
have an eigenvalue λ with |λ| > 1

(e) If eAtx goes to zero as t → ∞ for every x, then A must/may/cannot
have an eigenvalue λ with |λ| > 1

(f) If A has an eigenvector

 1
2
3

, then it must/may/cannot have an

eigenvector

 −3
−6
−9

.

Solution:
(a) May. (All “normal” matrices AAH = AAH , such as Hermitian matrices,

are diagonalizable with orthogonal eigenvectors, but the converse is not
true: not all diagonalizable matrices are normal. On the other hand, all
diagonalizable matrices are similar to normal matrices, so there is some
change of basis in which their eigenvectors are orthogonal.)

(b) May. (All positive Markov matrices must yield a steady state—they have
a single λ = 1 eigenvalue and all others have |λ| < 1, but the converse is
not true: a Markov matrix with zero entries may still have a single |λ| = 1
eigenvalue. On the other hand, although any Markov matrix must have a
λ = 1 eigenvalue, it may also have other eigenvalues like λ = −1 that can
cause Mnx to oscillate forever without converging.)

(c) Must. Non-diagonalizable (defective) matrices can only arise when the
characteristic polynomial has repeated roots. (The converse is not true,
however: a matrix with repeated eigenvalues may still be diagonalizable.)

(d) May. Even if there is some |λk| > 1, you can still get decaying Anx if x
is chosen to be an eigenvector xj of a different eigenvalue with |λj | < 1,
or to be a linear combination of such eigenvectors.
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(e) May. For eAtx to decay, all of its eigenvalues must have negative real
parts. This is unrelated to the magnitude |λ|. For example, it could have
an eigenvalue λ = −2.

(f) Must.

 −3
−6
−9

 = −3

 1
2
3

, and all nonzero multiples of an eigenvector

are also eigenvectors (of the same eigenvalue).
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Problem 4 (25 points):
Suppose A is a real-symmetric matrix with eigenvalues λ1 = 1, λ2 = 3, λ3 = 0,
and λ4 = 7, with corresponding eigenvectors:

x1 =


1
1
1
1

 , x2 =


1
−1
1
−1

 , x3 =


1
1
−1
−1

 , x4 =


1
−1
−1
1

 .

Now, we construct a sequence of vectors y0, y1, y2, . . . where each vector yk+1 in
the sequence is computed from the previous vector yk by solving

(A− 2I)yk+1 = yk

for yk+1. If y0 =


4
3
2
1

, give a good approximation for y100.

Solution:
Rearranging, we have yk+1 = (A− 2I)−1yk, so

yk = (A− 2I)−ky0.

For k = 100, this will be dominated by the largest |λ| eigenvalues of (A−2I)−1,
but this matrix has the same eigenvectors as A with its eigenvalues λ replaced
by 1

λ−2 . So, the eigenvalues of (A− 2I)−1 are

1

λ1 − 2
= −1,

1

λ2 − 2
= 1,

1

λ3 − 2
= −1

2
, and

1

λ4 − 2
=

1

5
.

Of these, the largest magnitudes are −1 and +1, which both have magnitude 1,
so y100 will be dominated by the x1 and x2 terms in the expansion of y0. More
explicitly, if we expand y0 in the basis of eigenvectors:

y0 = c1x1 + c2x2 + c3x3 + c4x4 ,

then

y100 = (A−2I)−100y0 = (−1)100c1x1+1100c2x2+

(
−1

2

)100

c3x3+

(
1

5

)100

c4x4 ≈ c1x1+c2x2 .

To compute this explicitly, we merely need to compute c1 and c2. But A is
Hermitian and hence the eigenvectors must be (and are) orthogonal, so we just
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need orthogonal projection to compute the coefficients of the basis expansion:

c1 =
xT1
xT1 x1

y0 =
1

4

(
1 1 1 1

)
4
3
2
1

 =
5

2
,

c2 =
xT2
xT2 x2

y0 =
1

4

(
1 −1 1 −1

)
4
3
2
1

 =
1

2
.

Therefore,

y100 ≈
5

2


1
1
1
1

+
1

2


1
−1
1
−1

 =


3
2
3
2

 .

Note that the next biggest term is on the order of 1
2100 ≈ 7.9 × 10−31, so this

approximation is pretty darn good! Actually, the c3 = 1 term is the only
correction, since c4 = 0 (xT4 y0 = 0).
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