18.06 Exam 2 Solutions

Johnson, Spring 2022

1. To fit the given points (zx, yx, 2x) € {(1,2,7),(0,0,2),(-1,0,3),(1,1,4),(2,—1,5)},
we have
ary + By + 7y = 21,
axg + Bys + 7 = 29,
ars + Bys + 7 = 23,
ary + Bys + 7 = 24,
ars + Bys + 7 = 2s.

Writing the above as a matrix equation, we have

r1 oy 1 2
To Yy 1 o 29
r3 ys L[| B8] =]z
Ty ys 1 Y 24
rs ys 1 Z5
In other words, we have
Ar =b
where
1 2 1 7
0O 0 1 2
A=1]1-1 0 1|} [b=]3
1 1 1 4
2 -1 1 5

But of course, this is overdetermined (more equations than unknowns) and is un-
likely to have an exact solution. Instead, the problem requests the least-square
solution, corresponding to minimizing ||b — Az||?, which yields the normal equa-
tions:

|AT Az = ATb
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where & = (&, B,’y) are the best-fit parameters. Writing this out explicitly by
plugging in the numbers (which was not required) yields:

1 2 1 7
10 -1 1 2 0 0 1 Q 10 -1 1 2 2
20 0 1 -1 -1 0 1 B =120 0 1 -1 3
11 1 1 1 1 1 1 A 11 1 1 1 4
2 -1 1 )




2. (a)

As b e C(A) = C(Q), we can write b as

b=QQ"b = qi(qb) + a2(a2 0) + a3(g3b) = ‘ 3v2q1 — 4y + 8gs |,

recalling that the coefficients of an orthonormal basis are obtained merely by
dot products (i.e. projections gq”).

Since N(AT) = C(A)*, we can get the orthogonal projection of y = _2

-2
onto N(AT) by simply subtracting the projection of y onto the ¢’s. In other
words, the orthogonal projection of y onto N(AT) is

I-QQMy=y—aldy) — ey —al@y)

1 1 1
22 \65 t g 02
g ! ;) 3 :
—2 7 —3 —3 0
The terms | ¢2 ay, qgal, qgag must be 0.
In general, for A = (al as ... an) with linearly independent columns, the
QR factorization obtained using Gram—Schmidt is
A=QR,
where () = (q1 qa . qn) is a m X n matrix with orthonormal columns span-
11T T21 ... T'n1
. To2 ... Tp2 . . X .
ning C(A) and R = . is an n xn invertible upper-triangular
0O 0 ... rm

matrix, with r;; = ¢ a; for all i > j.

Another way of seeing the same thing is to recall the Gram—Schmidt process.
By construction, ¢, is parallel to a;, so ¢» and ¢3 must be L a;. as is in the
span of ¢; and ¢, so we must also have g3 L as. |



3. For f(z) = (b — Ax)"M (b — Ax), recall from class that d(y" My) = dy’ My +
yI'Mdy = 2dy" My (using M = M7T). For y = b — Az, we have dy = —Adz.
Combining these equations yields:

df = 2dy" My = 2(—Adx)" M (b — Ax) = da” [-2AT M A(b — Ax)],

J/

v/

since the gradient is defined by df = V fTdx = do?V f. Alternatively, going through
all of the steps explicitly using the product rule, we have

df = d((b— Ax)"M (b — Ax))

= (d(b— Az)" )M (b — Az) + (b — Ax)T(dM)(b — Az) + (b — Ax)" M (d(b — Ax))
—(Adx)"M(b— Az) +0 — (b — Az)" M Adx  (since dA, db, dM all vanish)
= —(M(b— Az))T(Adz) — (b — Ax)" M Adx  (since 27y = y"x for column vectors z,y)
= —((b—Ax)"MTA+ (b— Ax)T' M A)dx
= —2(b— Az)" M Adx (since MT = M)
= (=24 M (b — Az)) dx.
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Therefore, when V f = 0, we have

—2ATM(b— Az) =0 <= |ATM Az = A" Mb|.




4. (a) If A= (a1 az), the projection matrix onto C(A) is given by alTaf % only
al a a2 a

when ‘al, ay are orthogonal‘ (# orthonormal).

T T, \ !
In general, we have P = A(ATA)7'AT = (a1 ay) (al a4 a2> (al),

T T
a3 a1 Q3 a2 (05}
which would have terms involving both a; and ay if they are not orthogonal.

(b) If S and T are orthogonal subspaces of a vector space V', then

(i) their intersection (vectors in both S and T) is the set | {0} |.
Note that if z € SNT then 272 =0 = z = 0.
(ii) (dimension of S) + (dimension of T") must be (dimension of V).

(The sum = dimension V' only when S and T are orthogonal comple-

1
ments, not merely orthogonal.) For example, S = span 0 and
0
0
T = span 1 are two orthogonal subspaces of V' = R3, and we have
0

(dimension of S) + (dimension of 7)) =1+ 1=2 < 3.

(c) For the vector space R?, give projection matrices onto:

000
(i) any O-dimensional subspace: [P = [0 0 0 || i.e. the 3 x 3 zero matrix.
0 00
(Note that the only 0-dimensional subspace is {0}.)
T
(ii) any l-dimensional subspace: | P = Zi—a for S = span{a} with some a # 0.
1 00 1
A specific example is [P = |0 0 0| |for S = span 0
0 00 0

, 1.e. the 3x 3 identity

o = O
= O O

1
(iii) any 3-dimensional subspace: | P = I3 = | 0
0

matrix. Note that the only subpsace of R? with dimension 3 is R? itself.

(d) We must have Q7Q = I for orthonormal columns, but | QQ” # I|is possible

whenever @ is not square (not unitary), in which case Q@' is the projection
matrix onto a lower-dimensional subspace C(Q) of the whole space. In par-
ticular, you just need any “tall” ) matrix: orthonormal columns, but fewer
columns than rows, such as the () matrix of problem 2.

The simplest example is a ) matrix with only a single orthonormal column, in
which Q@7 is projection onto a 1d subspace, such as:

o= (o)} @@= () p)#1
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(e) Aisa 7 x5 matrix of rank 4.

(i) Give the size and rank of the following projection matrices:

i. P, = projection onto C(A): ’size =7x7, rank = 4‘

ii. P, = projection onto C(AT): ’size =5 x 9, rank = 4‘

iii. Py = projection onto N(A): |size =5 x 5, rank =5—4=1]

iv. P, = projection onto N(AT): ’size =T7x7, rank =7—4= 3‘

(ii) Give a sum or product of two of these P matrices that must = 0 (a
zero matrix): Note that as C(A) and N(AT) are orthogonal
complements. Similarly, we have ’P4P1 =0||PP;=0||PsFP=0 ‘

(iii) Give a sum or product of two of these P matrices that must = I (an
identity matrix): As C(A) and N(AT) are orthogonal complements, we

have Py = I — P;. Therefore, | P, + Py = I | Similarly, | P, + P;=1| N
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