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1 (25 pts.)

A random 4x3 matrix A has a full SVD computed with Julia. The singular values are

2.067989079857846, 0.9964025831888096, 0.4854455453874191.

The singular vectors are the columns of

U =


−0.534606 0.697017 0.396747 0.266373

−0.324715 −0.691464 0.539027 0.354805

−0.650464 −0.156256 −0.10825 −0.735365

−0.430874 −0.107832 −0.735066 0.512247

 and

V =


−0.391685 0.466488 0.793077

−0.729853 0.367332 −0.576525

−0.560265 −0.804647 0.196589

 .

1.(a) (5 pts.) Is ATA invertible? Why or why not?

Solution. We will denote the 4×3 matrix of singular values by Σ, with diagonal entries σ1,

σ2, σ3, so A = UΣV T . Note that we can write ATA = (UΣV T )TUΣV T = V ΣTUTUΣV T ,

and because U is orthogonal, we have ATA = V ΣTΣV T . Consider the product ΣTΣ. It

is a product of a 3 × 4 matrix by a 4 × 3 matrix, hence is 3 × 3, and we can note that

it is a diagonal matrix with entries σ2
1, σ2

2, σ2
3 on the diagonal. These entries are nonzero,

by assumption, so ΣTΣ is nonsingular. Therefore, ATA is also nonsingular, since it is the

product of three nonsingular matrices V , ΣTΣ and V T , in other words, it is invertible.

2



1. (b) (5 pts.) Find and circle a vector perpendicular to every column of A.

U =


−0.534606 0.697017 0.396747 0.266373

−0.324715 −0.691464 0.539027 0.354805

−0.650464 −0.156256 −0.10825 −0.735365

−0.430874 −0.107832 −0.735066 0.512247



V =


−0.391685 0.466488 0.793077

−0.729853 0.367332 −0.576525

−0.560265 −0.804647 0.196589



Solution. Column space of A is spanned by the first r = 3 columns of U , and U is

orthogonal, so its fourth column will be perpendicular to the column space of A. Answer:

circle the fourth column of U .

1. (c) (5 pts.) Is AAT invertible? Why or why not?

Solution. Similarly to part (a), we write AAT = UΣV T (UΣV T )T = UΣV TV ΣTUT =

UΣΣTUT . Note now that ΣΣT is a 4 × 4 diagonal matrix with three nonzero diagonal

entries, hence it is singular, so the whole product also has determinant zero and therefore is

not invertible.
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1. (d) (5 pts.) How many solutions to Ax = b are there for a randomly generated b such as

b =


1.2616743877482997

−0.6492300349356348

−1.8681658666758472

−1.6717363181989333

. Explain briefly.

Solution. Question about the existence of solution to Ax = b is equivalent to asking

whether b is in the column space of A. Column space of A is a three-dimensional hyperplane

in R4, and a random vector does not lie there. So we should expect there to be no solutions.

1. (e) (5 pts.) What is the dimension of the orthogonal complement of the row space of A?

Explain briefly.

Solution. Row space of A is of dimension r = 3, and is contained in R3, so it coincides

with R3. But the orthogonal complement to the ambient space is just zero, so dimension of

the orthogonal complement of the row space is zero.
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2 (20 pts.)

2. (a) (10 pts.) Suppose A = QR is the QR factorization of A into orthogonal times upper

triangular. It is possible to write ± det(A) as an expression in terms of the entries of R.

What is this expression?

Solution. Recall that detQ = ±1 and use multiplicativity of determinant to get: detA =

det(QR) = detQ detR = ± detR. Now recall that determinant of an upper-triangular

matrix is the product of its diagonal elements. Denoting the matrix elements of R by Rij,

and assuming that A is n × n (it is square, because determinant is only defined for square

matrices), we get ± detA = detR =
∏n

i=1Rii.

2. (b) (10 pts.) A fact that you can assume is that a reflector has determinant -1. Suppose

you are told that Q can be written as the product of exactly 17 different reflectors, what can

we say exactly about det(Q)?

Solution. Denote the reflectors by Ri, for i from 1 to 17. Then detRi = −1 by assumption,

and therefore detQ = det(R1 · · ·R17) = detR1 · · · detR17 = (−1)17 = −1.
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3 (25 pts.) Am I a linear transformation? Briefly explain why or why not.

a. x→ xTAx where x ∈ Rn and A is a fixed n× n matrix.

Solution. No, because T does not respect scaling by λ ∈ R: indeed, T (λx) = λxTAλx =

λ2xTAx = λ2T (x), and this is not equal to λT (x) for any nonzero vector x and any λ 6= 0, 1.

b. A→ xTAx where A is an n× n matrix and x ∈ Rn is a fixed vector.

Solution. Yes, because we can check additivity and scaling axioms:

• T (A+B) = xT (A+B)x = xT (Ax+Bx) = xTAx+ xTBx = T (A) + T (B);

• T (λA) = xTλAx = λxTAx = λT (A).

c. P (x)→ P ′(x) where P (x) is a polynomial.

Solution. Yes, because taking derivative is linear.

d. A→ det(A) where A is an n× n matrix.

Solution. If n = 1, then it is linear, because it is just identity. If n > 1, then is is not linear,

because det is linear in rows, so if we scale A by, say, a factor of 2, then det 2A = 2n detA,

for example det 2I = 2n 6= 2 = 2 det I.

e. x→ prod(x) where x ∈ Rn (and prod means compute the product of the entries in x.)

Solution. If n = 1, then it is linear, because it is just identity. If n > 1, then it is not

linear, because for a vector of ones, we get T
(
2(1, . . . , 1)T

)
= 2n 6= 2 = 2T

(
(1, . . . , 1)T

)
.
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4 (15 pts.) The 3x3 upper triangular matrices U form a six dimensional vector space. So

do the symmetric 3x3 matrices S.

4. (a) (5 pts.) How many parameters are needed to specify a linear transformation from the

3x3 upper triangular matrices to the symmetric 3x3 matrices?

Solution. In order to specify a linear transformation from a 6-dimensional space to a

6-dimensional space, we need 6 · 6 = 36 parameters.

4. (b) (10 pts.) Give two different examples of linear transformations (other than the zero

transformation) from the 3x3 upper triangular matrices to the symmetric 3x3 matrices.

Solution. Valid examples:

1. A 7→ A+ AT ;

2. Send a matrix to the diagonal matrix with the same diagonal:


a b c

d e

f

 7→

a

d

f

.

5 (15pts.)

Consider the nonlinear matrix function f(A) = ATA. It is possible to write df as a linear

transformation of dA. What is that linear transformation?

Solution. We can solve it by applying formal rules: df(A) = d(ATA) = (dA)TA+ATdA.

Or using the notion of small increments (note that we neglect the terms that have second or

higher order in dA):

df(A) = f(A+ dA)− f(A) = (A+ dA)T (A+ dA)− ATA =

= ATA+ (dA)TA+ ATdA+ (dA)TdA− ATA = (dA)TA+ ATdA.

We cannot simplify further, because (dA)TA is not equal to ATdA, for matrix multiplication

is not commutative.
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6. (Extra Credit 5 pts.) This problem is only worth five points. Some of you may see the

answer right away, but others may not see it at all. We do not recommend looking at this

problem unless you have extra time, as the five points may not be worth the time lost.

We have two matrices A and B:

A =


1 0 0

a 1 0

0 0 1

 and B =


1 0 0

0 1 0

0 b 1

 .

Write the products AB and BA without mechanical operations. For the five points, explain

briefly your answer with words not mechanics. Graders will give points subjectively for really

good expositions only.

Solution. Left multiplication by A is the operation of adding the first row scaled by a to

the second row. Similarly, left multiplication by B is the operation of adding the second row

scaled by b to the third row.

So if we write AB, we can think of it in terms of how it operates on matrices (in particular,

vectors) on the right. So we first applyB, that is add a multiple of the second row to the third,

and then add a multiple of the first row to the second, so the product is AB =


1

a 1

0 b 1

.

When we write it in the other order BA, we first apply A and add a multiple of the first

row to the second. But then, B adds a multiple the modified second row to the third. In

this case, we also have a scaled by a first row as an additional summand, so the composition

works as follows: it adds the scaled by a first row to the second, the scaled by b row (of

the original matrix) to the third, and the scaled by ab first row to the third. Therefore, the

product is: BA =


1

a 1

ab b 1

.
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