
SOLUTIONS TO PROBLEM SET 6

18.06 SPRING 2016

Note the difference of conventions: these solutions adopt that the characteristic polynomial of
a matrix A is det (A−xI) while the lectures adopt the convention that it is det (tI −A). The difference
between the two is the sign (−1)n. As far as the answers are concerned, it only affects problem 1.

(1) What is the constant term of the characteristic polynomial of a square matrix? Why?

The constant term of a polynomial P (x) is its value when x = 0. By definition of the
characteristic polynomial, its value when x = 0 is the determinant of the matrix.

Answer: The determinant of the matrix.

(2) Compute the eigenvalues of the matrix
0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0



Compute the characteristic polynomial

det


−x −1 0 0
−1 −x −1 0
0 −1 −x −1
0 0 −1 −x

 = −x · det

−x −1 0
−1 −x −1
0 −1 −x

− (−1) · det

−1 −1 0
0 −x −1
0 −1 −x

 =

= −x
(
−x · det

(
−x −1
−1 −x

)
− (−1) · det

(
−1 −1
0 −x

))
− (−1) · (−1) · det

(
−x −1
−1 −x

)
=

= −x(−x(x2 − 1) + x)− (x2 − 1) = x4 − 3x2 + 1.

The eigenvalues are the roots of this polynomial. Let y = x2. Then y is a root of the quadratic

polynomial y2 − 3y + 1, and y ≥ 0. Solving the quadratic polynomial, we get y = 3±
√
5

2 . Both
roots are positive, so given that x = ±√y we get four possibilities for x.

Answer:

√
3+
√
5

2 ,

√
3−
√
5

2 , −
√

3+
√
5

2 , −
√

3−
√
5

2 .

Or alternatively: ±1±
√
5

2 (note that 1+
√
5

2 =

√
3+
√
5

2 etc.).
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(3) The following matrices have only one eigenvalue: 1. What are the dimensions of the eigenspaces
in each case? 1 0 0

0 1 0
0 0 1

 ,

1 0 0
1 1 0
0 1 1

 ,

1 0 0
1 1 0
1 1 1

 ,

1 0 0
0 1 0
1 0 1


For a matrix A, the eigenspace with eigenvalue λ is the kernel of the matrix A−λI. Here we

have λ = 1, so we subtract I from each of the matrices above:0 0 0
0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 1 0

 ,

0 0 0
1 0 0
1 1 0

 ,

0 0 0
0 0 0
1 0 0


and find the dimensions of the kernels.

The ranks of these matrices are 0, 2, 2, 1 respectively, so by the rank-nullity theorem the
dimensions of the kernels are 3, 1, 1, 2.

Answer: 3, 1, 1, 2.

(4) Is the matrix 1 1 0
1 1 1
0 1 1


diagonalizable?

Short solution: Yes, because it is symmetric. Symmetric matrices are always diagonalizable.
Long solution: An n × n matrix is diagonalizable if and only if the dimensions of its

eigenspaces add up to n. Let us find the eigenvalues and then find the dimension of the eigenspace
for each eigenvalue.

To find the eigenvalues, let us write the characteristic polynomial.

det

1− x 1 0
1 1− x 1
0 1 1− x

 = (1− x) · det

(
1− x 1

1 1− x

)
− 1 · det

(
1 1
0 1− x

)
=

= (1− x)((1− x)2 − 1)− (1− x) = (1− x)((1− x)2 − 2) = (1− x)(x2 − 2x− 1).

The roots of the quadratic polynomial x2− 2x− 1 are 2±
√
8

2 = 1±
√

2, therefore the eigenvalues

of the matrix are 1, 1+
√

2, 1−
√

2. We have three distinct eigenvalues, and each of them has an
eigenspace of dimension at least 1, so the sum of the dimensions is at least 3. On the other hand,
in a 3-dimensional space this sum is at most 3, so it equals 3, so the matrix is diagonalizable.

(Note that by the same argument an n × n matrix with n distinct eigenvalues is always
diagonalizable).

Answer: Yes.

(5) If n is odd, then every n× n matrix has at least one eigenvector in Rn. Why?

The degree of the characteristic polynomial of an n × n matrix equals n. If n is odd, a
polynomial of degree n always has a real root.
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(6) Suppose n ≥ 2, and consider the n× n matrix A = (αi,j) whose entries are given by

αi,j =

{
1 if j = i+ 1;

0 otherwise.

(a) Write a formula for the entries of the matrix Ak for 0 ≤ k ≤ n.
(b) For 1 ≤ k ≤ n, compute the eigenvalues and eigenspaces of Ak.

Let ei be the ith vector of the standard basis. Then Ae1 = 0, Ae2 = e1, Ae3 = e2 etc.
Therefore, A2ei = 0 for i = 1, 2 and A2ei = ei−2 for i ≥ 3. Similarly, Akei = 0 for i = 1, . . . , k,
and Akei = ei−k for k < i ≤ n. Using this, we can write a formula for the entries of Ak: we
have (Ak)i,j = 1 if j = i+ k and 0 otherwise. Note that this also covers k = 0, when A0 = I.

For the eigenvectors of the matrix Ak, note that the vectors e1, . . . , ek are eigenvectors with

eigenvalue 0, so any vector of the form
k∑
i=1

aiei is an eigenvector with eigenvalue 0. Suppose

there is some other eigenvector v =
n∑
j=1

bjej , and let m > k be the highest index with bm 6= 0 (we

can tell that m > k from the assumption that v is not a linear combination of e1, . . . , ek). Then

Akv =
m∑
j=1

bjA
kej =

m∑
j=k+1

bjej−k, in particular, the component along em equals 0. Therefore, v

can only be an eigenvector if its eigenvalue is 0. On the other hand, bmem−k 6= 0, so eigenvalue
0 is not a possibility either. We conclude that there are no eigenvectors other than the linear
combinations of e1, . . . , ek.

Answer: a) (Ak)i,j = 1 if j = i+ k and 0 otherwise; b) the only eigenvalue of Ak is 0, and
the space of eigenvectors is the span of e1, . . . , ek.

(7) Suppose x̂ ∈ Rn a unit vector. Recall from Exam III the Householder matrix H = I − 2x̂x̂T and
the hyperplane

N := {~v ∈ Rn | ~v · x̂ = 0}
(which is the orthogonal complement to x̂).
(a) If you werent able to show that for any ~w ∈ Rn, one has πN (~w) = πN (H ~w) on Exam III,

please write up a proof here in your own words!
(b) Prove that for any ~w ∈ Rn, one also has

~w − πN (~w) = πN (H ~w)−H ~w.

Explain what H does geometrically; draw a picture for n = 2 and n = 3.
(c) Purely from geometry, compute the eigenvalues and eigenspaces of H. (You dont have to

compute any determinants for this.) Is H diagonalizable?

The n× n matrix x̂x̂T is the matrix of the projection of the space Rn onto the line spanned
by the vector x̂. (Note: this is not to be confused with x̂T x̂, which is a number equal to x̂ · x̂).
Denote this projection by πx. The line spanned by x̂ and the hyperplane N are orthogonal
complements, so for any ~w ∈ Rn we have ~w = πN (~w) + πx(~w). The vector πN (~w) = ~w − πx(~w)
is the projection of ~w onto N ; the vector H ~w = ~w − 2πx(~w) is the reflection of ~w with respect
to N . In other words, H ~w = πN (~w)− πx(~w).

Now it is clear that the vectors ~w and H ~w, its reflection with respect to N , have the same
projection onto N (part (a)). Moreover, ~w − πN (~w) = πx(~w) = −πx(H ~w) = πN (H ~w) − H ~w
(part (b)). Finally, as a reflection, H has eigenvalues 1 and −1. The eigenspace for eigenvalue 1
is the hyperplane N , and the eigenspace for eigenvalue −1 is the line spanned by x̂. Since their
dimensions add up to n, the matrix H is diagonalizable (part (c)).
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(8) For every permutation σ ∈ Σ3, compute the eigenvalues and eigenspaces of the 3× 3 matrix Pσ.

For σ = id, we have Pσ = I, so the only eigenvalue is 1 and the corresponding eigenspace is
R3.

The two matrices corresponding to the two cycles of length 3 are rotations around the line
x = y = z, so the only eigenvalue is 1, and the corresponding eigenspace is the line x = y = z.

The three transpositions correspond to reflections, so the eigenvalues are −1 (with multiplicity
1) and 1 (with multiplicity 2).

Answer: (let the coordinates on R3 be x, y, z, in this order; permutations given in cycle
notation).

• σ = id, Pσ =

1 0 0
0 1 0
0 0 1

. Eigenvalue 1: eigenspace R3.

• σ = (12), Pσ =

0 1 0
1 0 0
0 0 1

. Eigenvalue 1: eigenspace x− y = 0 (a plane), eigenvalue −1:

eigenspace (x+ y = 0, z = 0) (a line).

• σ = (13), Pσ =

0 0 1
0 1 0
1 0 0

. Eigenvalue 1: eigenspace x− z = 0 (a plane), eigenvalue −1:

eigenspace (x+ z = 0, y = 0) (a line).

• σ = (23), Pσ =

1 0 0
0 0 1
0 1 0

. Eigenvalue 1: eigenspace y − z = 0 (a plane), eigenvalue −1:

eigenspace (y + z = 0, x = 0) (a line).

• σ = (123), Pσ =

0 0 1
1 0 0
0 1 0

. Eigenvalue 1: eigenspace x = y = z (a line).

• σ = (132), Pσ =

0 1 0
0 0 1
1 0 0

. Eigenvalue 1: eigenspace x = y = z (a line).

(9) Does the matrix 
1 −1 0 0
1 1 −1 0
0 1 1 −1
0 0 1 1


have any real eigenvalues?

Compute the characteristic polynomial:

det


1− x −1 0 0

1 1− x −1 0
0 1 1− x −1
0 0 1 1− x

 = (1−x)·det

1− x −1 0
1 1− x −1
0 1 1− x

−(−1)·det

1 −1 0
0 1− x −1
0 1 1− x

 =

= (1− x)

(
(1− x) · det

(
1− x −1

1 1− x

)
− (−1) · det

(
1 −1
0 1− x

))
+ det

(
1− x −1

1 1− x

)
=

= (1− x)((1− x)((1− x)2 + 1) + 1− x) + (1− x)2 + 1.
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Let t = 1 − x. Then the polynomial takes form t(t(t2 + 1) + t) + t2 + 1 = t4 + 3t2 + 1. This
polynomial has no real roots since both t2 and t4 are always non-negative, so neither does the
characteristic polynomial of the matrix. Therefore, this matrix has no real eigenvalues.

Answer: No.

(10) What is the characteristic polynomial of the matrix
1 1 2 3
1 2 3 5
2 3 5 8
3 5 8 13

?

From the previous problem sets we know that the rank of this matrix is 2 (we can also easily
find this out by row reduction). Therefore, by the rank-nullity theorem, the kernel of this matrix
has dimension 2. By definition, the kernel of a matrix is the eigenspace for eigenvalue 0, so we
know that the geometric multiplicity of 0 is 2. Hence the algebraic multiplicity of 0 is at least
2, i.e. the polynomial is divisible by x2. Therefore, it has the form ax4 + bx3 + cx2.

Let us look at the three coefficients a, b, c. The characteristic polynomial consists of all
possible terms of the following form: choose n entries in the matrix A so that the combination
has exactly one entry from each row and each column; for each entry on the diagonal make
an additional choice, taking either aii or −x; multiply all together and add sign. Among these
terms, the ones which have x in degree k are of the following form: choose k entries from the
diagonal (that’s where your x’s come from); from the matrix A, cross out the columns and rows
that contain these entries; take the determinant of the (n−k)× (n−k) matrix you got; multiply
by (−x)k. In this manner, we see that the degree n term is always (−1)nxn, and the degree
(n− 1) term is (−1)n−1

∑
aiix

n−1 (the value
∑
aii is also called the trace of the matrix).

Thus we have a = 1, b = −1− 2− 5− 13 = −21, and

c = det

(
1 1
1 2

)
+ det

(
1 2
2 5

)
+ det

(
1 3
3 13

)
+ det

(
2 3
3 5

)
+ det

(
2 5
5 13

)
+ det

(
5 8
8 13

)
=

= 1 + 1 + 4 + 1 + 1 + 1 = 9.

Answer: x4 − 21x3 + 9x2.


