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April 7, 2016

Problem 1

The Gram-Schmidt procedure does not modify orthormal sets of vectors {~v1, . . . , ~vk} in Rn. Let us prove

this statement by induction on k. If k = 1 it is obvious. Consider a orthonormal set {~v1, . . . , ~vk+1} of

k + 1 vectors in Rn. We first apply GS to the set {~v1, . . . , ~vk}. By the induction hypothesis, this set stays

unchanged. Then we compute the orthogonal projection of ~vk+1 onto the space spanned by ~v1, . . . , ~vk. Since

~vk+1 is orthogonal to ~vi for i = 1 . . . k, this projection is ~0. Therefore the GS procedure does not change the

set {~v1, . . . , ~vk+1}.

Problem 2

The matrices Π(n) are symmetric therefore we only need to compute Ker Π(n) and Im Π(n). If we call Cn
i

the i-th column of the matrix Π(n) we have for all n ≥ 4 and i ≥ 4

Cn
i = Cn

i−2 + Cn
i−3 (1)

Therefore, when n ≥ 4, the column space of Π(n) is the span of the first three columns. We can check that

these three first columns are independent. Hence, Cn
1 , C

n
2 , C

n
3 is a basis of Im Π(n) when n ≥ 4. By the

rank-nullity theorem, we have when n ≥ 4 :

dim Ker Π(n) = n− 3

To find a basis of Ker Π(n), it suffices to exhibit n − 3 independent vectors in Ker Π(n). We deduce them

from equation (1). They are given by, for i ≥ 4

vi = ei − ei−2 − ei−3

Finally, it is straighforward to check that Π(1), Π(2) and Π(3) are invertible matrices. Hence they have

trivial kernels and their image is R, R2 and R3.
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Problem 3

After 3 elementary row operations we can bring the matrix A to the following matrix

B =

1 0 0 1 3

0 1 0 −3 −8

0 0 1 3 6


where

Ker(A) = Ker(B)

Therefore a basis of Ker A is given by ~v1 = (−1, 3,−3, 1, 0)T and ~v2 = (−3, 8,−6, 0, 1)T . Let us orthogonalize

{~v1, ~v2}. We have π ~v2(~v1) = 45
20 ~v1, hence let ~w2 = ~v2 − π ~v2(~v1) = 1

4 (−3, 5, 3,−9, 4)T . Then {~v1, ~w2} is a

orthogonal basis of Ker A. We have

πKer A(~b) = π ~v1(~b) + π ~w2
(~b) = −2

5
(−1, 3,−3, 1, 0)T +

2

35
(−3, 5, 3,−9, 4)T =

8

35
(1,−4, 6,−4, 1)T

Problem 4

Let (ei)i=1...n be the canonical basis of Rn. We define the vectors vi ∈ Rn for i = 1 . . . n by

vi = (1, . . . , 1)T − ei

It is easy to see that vj .vj = n − 1 and that vi.vj = n − 2 when i 6= j. Let {u1, . . . , un} be the GS

orthogonalization of {v1, . . . , vn}. Then u1 = v1 and uk (k ≥ 2) is of the form

uk = vk + c1kv1 + · · ·+ ck−1k vk−1

where c1k, . . . , c
k−1
k are real numbers. The GS process indicates that uk is orthogonal to v1, . . . , vk−1, i.e.,

uk.vj = (vk + c1kv1 + · · ·+ ck−1k vk−1).vj = 0

for j = 1, . . . , k − 1. By symmetry we know that c1k = · · · = ck−1k and an easy computation shows that

c1k = · · · = ck−1k = − n− 2

n− 1 + (k − 2)(n− 2)

So

uk = vk −
n− 2

n− 1 + (k − 2)(n− 2)
(v1 + . . . vk−1)

=
1

n− 1 + (k − 2)(n− 2)
(1, . . . , 1,−k(n− 2), 3− n, . . . , 3− n)T

where 1 appears for k−1 times and 3−n appears for n−k times. The GS orthonormalization of {v1, . . . , vn}
is given by { u1

||u1|| , . . . ,
un

||un||}.
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Problem 5

(a) Let v = (v0, . . . , vn)T and w = (w0, . . . , wn) be two vectors in Rn+1 and r, s be two real numbers. Since

rv + sw = (rv0 + sw0, . . . , rvn + swn), we have by definition

prv+sw(x) =

n∑
i=0

(rvi + swi)x
i

= r

n∑
i=0

vix
i + s

n∑
i=0

wix
i

= rpv(x) + spw(x)

(b) (i) Let v and w be two vectors in Rn+1. Then,

〈v|w〉 =

∫ 1

−1
pv(x).pw(x)dx

=

∫ 1

−1
pw(x).pv(x)dx

= 〈w|v〉

(ii) Let v, w and u be three vectors in Rn+1 and r, s be two real numbers. We have :

〈rv + sw|u〉 =

∫ 1

−1
prv+sw(x).pu(x)dx

=

∫ 1

−1
(rpv(x) + spw(x)).pu(x)dx

= r

∫ 1

−1
pv(x).pu(x)dx+ s

∫ 1

−1
pw(x).pu(x)dx

= r〈v|u〉+ s〈w|u〉

(iii) Let v be a vector in Rn+1 such that 〈v|w〉 = 0 for all w ∈ Rn+1. In particular,

〈v|v〉 =

∫ 1

−1
pv(x)2dx = 0

The integral of a continuous and non-negative function on an interval is trivial if and only the function itself

is trivial. Therfore, pv(x) = 0 on the interval [−1, 1]. Since a nontrivial polynomial cannot have infinitely

many zeroes, we get that pv = 0, hence that v = 0.
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(c) Let v = (1, . . . , 1)T . By definition, we have

〈v|v〉 =

∫ 1

−1
pv(x)2dx

=

∫ 1

−1
(1 + x+ · · ·+ xn)2dx

=

∫ 1

−1
(

n∑
i,j=0

xi+j)dx

=

n∑
i,j=0

∫ 1

−1
xi+jdx

=

n∑
i,j=0

1− (−1)i+j+1

i+ j + 1

=

2n∑
k=0

pk.
1− (−1)k+1

k + 1

where pk denotes the number of pairs (i, j) such that i + j = k, 0 ≤ i, j ≤ n for k = 0, . . . , 2n. The length

of v is given by
√
〈v|v〉.

(d) Let i and j be two integers between 0 and n.

〈ei|ej〉 =

∫ 1

−1
pei(x).pej (x)dx

=

∫ 1

−1
xi.xjdx

=

∫ 1

−1
xi+jdx

=
1− (−1)i+j+1

i+ j + 1

So ei and ej are orthogonal if and only if i+ j is odd.

(e) We have u0 = e0. By (d), u0.e1 = 0 hence u1 = e1. To compute u2, we need to compute u0.e2

and u1.e2. The second quantity is 0 for the same reason. As for the first one, u0.e2 = 2
3 . Moreover,

u0.u0 = 2. Hence u2 = e2 − 1
3e0. The only non-trivial term while computing the projection of e3 into the

space spanned by u0, u1, u2 is u1.e3 = 2
5 . Since u1.u1 = 2

3 we obtain u3 = e3 − 3
5e1. Using similar reasoning,
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we find u4 = e4 − 6
7u2 −

1
5u0 = e4 − 6

7e2 + 3
35e0. In terms of polynomials,

pu0
(x) = 1

pu1
(x) = x

pu2(x) = x2 − 1

3

pu3(x) = x3 − 3

5
x

pu4
(x) = x4 − 6

7
x2 +

3

35

(f) Let us denote by Qn the polynomial ( d
dx )n((x2 − 1)n) for n ≥ 0. Note that the degree of Qn is n

for all n ≥ 0. Let us use the notation Vn for the space of polynomials of degree at most n. In other words,

Vn is the span of 1, x, . . . , xn. We have a sequence of inclusions

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ . . .

Let us prove that the degree of pun is n for all n ≥ 0. It is true when n = 0. Assume it is true up to the

integer n. Since by GS the span of u0, . . . , un+1 is the same as the span of the vectors e0, . . . , en+1, we see

that the degree of pun+1 is at most n+ 1. If it was strictly less than n+ 1 we would have n+ 2 independent

vectors u0, . . . , un+1 in Vn. This is not possible because the dimension of Vn is n+ 1.

The next step is to prove that the polynomial Qn is orthogonal to Vn−1 for the scalar product 〈.|.〉. Let

P ∈ Vn−1 , i.e. a polynomial of degree at most n− 1. In particular, ( d
dx )n(P ) = 0. We want to show that

∫ 1

−1
P.Qn = 0

It is not too hard to check by induction that ( d
dx )j(Qn) = Rj(x).(x2 − 1)n−j for some polynomial Rj for

j = 0, . . . , n − 1. Consequentely, ( d
dx )j(Qn)(1) = ( d

dx )j(Qn)(−1) = 0 for j = 0, . . . , n − 1. Therefore,

performing integration by part n times gives∫ 1

−1
P.Qn =

∫ 1

−1
P (x).(

d

dx
)n((x2 − 1)n)dx

= (−1)n
∫ 1

−1
(
d

dx
)n(P ).Qn(x)dx

= 0

At this point, we have enough information to claim the following fact : pun and Qn are proportional for all

n. Remember that the un comes from GS applied to the canonical basis ei. Therefore it is orthogonal to

the space spanned by e0, . . . , en−1 which is precisely Vn−1. Both pun and Qn are elements of the space Vn

which are orthogonal to the space Vn−1. The dimension of the space Vn (resp. Vn−1) is n (resp. n − 1).

Therefore the dimension of Vn−1
⊥ is 1. The polynomials pun and Qn belong to a space of dimension 1, so
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they are proportional. We can find the coefficient of proportionnality by looking at the highest degree term

of each of them. The leading term of pun is xn. The leading term of Qn is 2n!
n! . We can then conclude that

for all n ≥ 0,

pun(x) =
n!

2n!
(
d

dx
)n(x2 − 1)n
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