PROBLEM SET IV

DUE THURSDAY, 7 APRIL 2016

(1) Suppose {7}, ..., U} an orthonormal set of vectors in R”. What happens
when you apply the Gram-Schmidt process to this set? Why?
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(2) The Padovan numbers p(n) are defined in a manner similar to the Fi-
bonacci numbers: we define

p(0) = p(1) = p(2) = 1,
and for n > 3, we set
p(n) = p(n—2)+ p(n-3).
Now consider the n x n matrix I1(n) whose i, j-th entry is given by
p(i+ ).
For 1 < n < 5, find a basis for each of the four fundamental spaces:

ker(II(n)), im(I1(n)), coker(II(rn)), and im(I1(#n)). Can you say what will
happen in general?
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(3) Here’s a vector of R:

1

-1

b= 1

-1

1

and here’s a 3 x 5 matrix

1 1111
A= 01 2 3 4
0 01 3 6

Compute the projection 7y, (») (B) of the vector b onto the subspace
ker(A) c R®.
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(4) Here’s a basis of R™:

( 0 1 1
1 0 1

) 1 1 1
1 1 1 0

| 1 1 1 1

This is the basis {#,, ..., U,} where
Uj = z éi'
i£j

What is the Gram-Schmidt orthonormalization of this basis?
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(5) Challenging. The Gram-Schmidt process isn't just for the dot product. It
works equally well for more exonic inner products. Here’s a fun example
for you to work through.

(a) The starting place is to think of a vector
%o
U= 06:1 € Rn+1

Xt1

as a way of encoding the coefficients of a polynomial in a variable x:
g poly
py(x) = Z ax' = + o X+ e+ o,
0<i<n

Prove that for any two vectors #, 0 € R™! and for any two scalars
r,s € R, we have

Pross(X) = 1ps(x) + spg (x).
(The fancy-sounding thing to say is that p defines a linear map (in

fact an isomorphism) from R™*! to the vector space of polynomials
of degree < n.)
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(b) Now define, for any two vectors @, @ € R"*!, a number

+1
(0, w) = J Po(x) pg(x) dx.

-1
This defines something called a scalar product on R"*!: in effect, you
input two vectors, and you get out a real number. We want to think
of this as formally analogous to the dot product. To see that analogy;,
check the following identities:

(i) For any two vectors 0, w € R",

(3,8) = (@,).
(ii) For any three vectors 0, w, X € R”, and for any two numbers
r,s € R,
(ro + s, X) = r(0,X) + s(w, X).
(iii) Suppose U € R" is a vector. If, for every vector & € R", one has
(0, ) = 0, then & = 0.
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(c) According to this scalar product, how “long” is the vector
g=(1,...,1)?
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(d) Now we see that the standard basis {é, ... ,é,} is no longer “orthogo-
nal” with respect to this new scalar product. (Note that we're indexing
things in a slightly different way, because we have n + 1 basis vectors.)
Indeed, compute, for any 1 < i, j < n, the number

<éi>éj>-

For which i and j do you get zero?
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(e) Now, finally, let’s apply the Gram-Schmidt orthogonalization process
— with respect to this crazy new scalar product! - to the standard basis

{é> ... €,}. So we define, iteratively,
. N
— ~ <ﬁ0)é1> —
U = T 75 5\ Ho
<L£0,u0>
. . iy, &) i, 6)
uz — _ < 0> 2> _ ( 1> 2>M1;

— — 0 — —
<Uo> Uo) <M1a M1>

(We won’t bother with the normalization step, because that’ll just
introduce a bunch of square roots no one wants.) Compute p; for
0<i<4. '

(f) (This bit’s very difficult, and totally optional.) Relate pg, to the n-th
derivative of (x? — 1)".



