18.06 - Problem Set 1 Solutions
February 16th, 2016

Problem 1 Are the following collections of vectors in R3 linearly indepen-
dent? Why or why not?
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Solution: In each case below let us refer to the collection of vectors in
question as S.

0

(a) S is not linearly independent. Indeed, 1 | 0 | = 0 is a nontrivial solution
0

to a1@ + - + apth, = 0 for § = {U1,...,U,}. Here 0 is our notation

for the origin of any vector space R".



(b)

5 3

S is linearly independent. Indeed, suppose a1 [ 2 | + a2 | 2] = 0. By
3 5

taking the dot product of this equation with €5 we see that

200 + 2a9 = 0 = a1 = —ao.
Then by taking the dot product with €; we see that
a1 +3as =0=2a; =0= a; =0.

But this also means as = 0. So our solution must have been trivial.

1 0 17
S is not linearly independent since 17 0| —34 [0 ]| +1| 0 | =0.
2 1 0

S is linearly independent. Let us prove this using a slightly different
technique from what we did in (b). Recall the following very important
fact (let us call it the two-out-of-three criterion)—if T is a finite collection
of vectors in R™ then any two of the following together imply the third:

e the number of vectors in T is n;
e the vectors in T span R";

e the vectors in T are linearly independent.

So, since #S5 = 3, we can show S is linearly independent by showing
it spans R3. Here is another simple but useful fact: to show that 7'
spans R™ it is enough to show that each standard basis vector €; for
i =1,2,...,n can be expressed as a linear combination of vectors in 7.
Thus to show S is linearly independent we need only show that é7, éa,
and €3 can be expressed as a linear combination of vectors in .S. We can
do that as follows:

1 0 1 17
010]4+0({0.00001 | +-—=1{0 | =é;
17
2 1
1 0 17
—50000 | 0 | + 100000 | 0.00001 +M 0 | =ey;
17
2 1
1 1 0 1 17
5 0] +0{ 0.00001 Y] 0| =eés.
2 1 0



(e) S is linearly independent. Since #S = 3, we can use follow the same
approach as the last problem and establish the S is linearly independent
by expressing €, €2, and €3 as linear combinations of vectors in S, as

follows:
2 5 1
14 1
6 2 9
43 ? n 12 g 26 ; .
33 6 33 9 33 9
8 2 3 o 1 1 N
g 1 — ﬁ 2 — ﬁ 2 = €3.
6 2 9

(f) S is linearly independent. Again since #S = 3, we can establish the S is
linearly independent by expressing €1, €3, and €3 as linear combinations
of vectors in S, as follows:

) o) i (h) 2
212120

) (o) <2 (1) =
2\y) 2\y) 2\
LY fo) ot h) 2
2\ 2\y) 2\

(g) S is linearly independent. Again since #S = 3, we can establish the S is
linearly independent by expressing €1, €3, and €3 as linear combinations



of vectors in S, as follows:

o) () S (D) L a
—1 2 —1 2 1

—1 —11 +0 _11 —1 :} = €y

2 —1 —1 2 1
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Problem 2 Write, if possible, each of the vectors €1, é,,é3 € R3 as a linear
combination of the following collections of wvectors. If it is not possible,
explain why not.
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Solution: In each case below let us refer to the collection of vectors in
question as S.

(a)

(b)

It is clearly not possible to express any of the vectors €, €3, or €3 as a
linear combination of vectors in S. Indeed, the set of linear combinations
of vectors of S is just the point {0}.

It is not possible to express any of the vectors €1, €3, or €3 as a linear
combination of vectors in S. Suppose that €; could be written as a
linear combination of vectors in S: then we have

5 3
a2 +as | 2] =€
3 5

for some o, as € R?; taking the dot product of this equation with &5
we see ap = —ayq; next, taking the dot product with €; we see bay +
3y =1= a1 = %; and finally taking the dot product with €3 we see
3a1 +H5a9 = 0= a1 =0 = % = 0, a contradiction. So indeed €
cannot be so expressed. Next suppose €5 could be written as a linear

combination of vectors in S: then we have

5 3
a |2l +ax 2] =&
3 5

for some a1, as € R?; taking the dot product with €} we see bag +3as =
0= ay = —%ozl; next, by taking the dot product with €5 we see that
2001+ 200 = 1 = 2041—%041 =1l=a; = %; finally taking the dot product
with &3 we see that Saq + 3ag :0:>5a1+%oz1 =0=a1=0= % =0,
a contradiction. So indeed €» cannot be so expressed. Finally, suppose
€3 could be written as a linear combination of vectors in S: then we
have

5 3

(a1 21 + a9 2] = 53
3 5

for some a1, s € R?; taking the dot product with €, we have 20 +
200 = 0 = a9 = —a1; next, taking the dot product with €5 we have
5a1 + 3as = 0 = 2a1 = 0 = a3 = 0; finally, taking the dot product
with €3 we have 3a1 + bas = 1 = —20 :1:>a1:—%:>0:—%, a
contradiction. So indeed €3 cannot be so expressed.



(c) We can express €3 and €3 as linear combinations of vectors in S as

follows:
1 0 17
OfO]+1[O0]+0[ 0| =eé
2 1
1 0 1 17
0[0])4+0(0])]+—=1| 0] =e5.
2 1 17 0

On the other hand, we cannot express €; as a linear combination of
vectors in S. Why is this? Because if we could, then all the basis
vectors of R? would lie in the span of S, which would mean S would
span R3. But by the two-out-of-three criterion, that would imply that
S was linearly independent. And we have seen in Problem 1 that S is
not linearly independent.

(d) It is possible to write each of €1, €2, and €3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(e) It is possible to write each of €1, €3, and €3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(f) It is possible to write each of €}, €, and €3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

(g) It is possible to write each of €7, €2, and €3 as a linear combination of
vectors in S and indeed we already did this in Problem 1.

Problem 3 How many solutions does each of the following systems of linear
equations have? (Answer without solving them, if you can!)

(a)

r+ 172 =3
20 +2=0

(b)

or — Ty + 172z =2
192 4+ 12y — 92 = 88
—113z4+y—2=-1



(c)

r+y+2z2=1
w+ar+2y=1
v+w+2r =1
u+v+2w=1

(d)
u+v+w+zrz+y—2z=0
u+v+w+r—2y+2=0
ut+v+w—-2r+y+2=0
u+v—-—2w+zrz+y+2=0
u—22v+w+zrz+y+2=0
—2u+v4+qg+r+y+2=0

Solution: First we make a general observation. A set T' = {01,...,7,} of
vectors in R satisfying any two of the two-out-of-three criterion is called a
basis. If T is a basis, then for any « € R there are unique a1,...,a, € R

such that ¥ = a1v7 + -+ + a,¥,. Because T spans R" there are certainly
some scalars like this. Why are they unique? Suppose to the contrary that
there were also (1,...,06, € R with @ = 101 + -+ + B,U, and there is
at least one i such that «; # ;. Then by subtracting the two equations
we would have 0 = (a1 — 51)71 + - + (an — Bn)Tn, with (o — ;) # 0,
contradicting the fact that T is linearly independent. So indeed there is a
unique way to express any vector as a linear combination of basis vectors.
We proceed to the problems:

(a) There is exactly one solution. Observe that a solution z,z € R to
the equation is the same thing as a solution x,z € R to the following

equation of vectors:
1 17
x <2> +Z<1> = (3,0).

Now we will apply our general observation. We claim {<;) 7 <117>}

is a basis of R?. Indeed, by the two-out-of-three criteria we just need
to show that they are linearly independent: but this is clear because
neither vector is a scalar multiple of the other. So indeed there is a
unique such solution z,y € R.



(b) Again, there is exactly one solution. Again, a solution z,y,z € R to the
equation is the same as a solution x, ¥, z € R to the following equation

of vectors:
5 -7 17 1
z| 19 +yl 12 ] 4+2z-9]=]|1
—-113 1 -1 1

So again we will apply our general observation. We claim

5 —7 17
S = 19 |,(12],[-9
~113 1 1

is a basis of R3. To show this, by the two-out-of-three criterion, we
can show it spans R3; in particular we can express €1, €, €3 as linear
combinations of elements of S as follows:

5 _7 17

B 16?08 19+ 4205297 12 ]+ 116317058 o =a
~113 1 1

5 o a9 (77N 393 (1T)

sosa | Yo Taoar | 2 Taosa | V) T
—113 1 1
5 _7 17

_1(1511(1)8 19+ 4327 12 ]+ 1(13?38 0| =é
~113 1 _1

(¢) There are infinitely many solutions. A solution w,v,w,z,y,z € R to
the equation is the same thing as a solution w,v,w,x,y,z € R to the
following equation of vectors:

ur| 4 vry + wis + xry + yrs + 2 =

— =



where

0 0 0
P 0 o 0 o 1
1= 1y 2= [ 377 |
1 1 2
1 1 2
S |1 N - 10
T4 1= 9 Ts ‘= 0 Te - — 0
0 0 0
First note that u =2,v = —-1,w =0,z =1,y = 0,z = 0 is one solution.

Next, note that 7,7, 7’3, 74, 75, 7 must be linearly dependent in R?,
just because the maximal size of set of linearly independent vectors in
R* is the dimension of the space, namely, 4. But that means we can
find ag,...,as € R such that

Q171 + a9 + asTs + aufs + as’s + agig = 0

and so that not «o; all zero. But then

(2 + tal)ﬁ + (—1 + tag)FQ + tOégT_"g —+ (1 + ta4)f'4 + tOZ5’F5 + toz67_"6 =

—_ = = =

for all t € R, and these are all different because «; # 0 for some i, so
indeed we have infinitely many solutions.

(d) There is exactly one solution. Observe that a solutionu, v, w,z,y,z € R
to the equation is the same thing as a solution u, v, w,z,y, 2 € R to the
following equation of vectors:

urg + vrs + wry + xry + yre + 2 =

OO OO oo

where 7; = —3¢€; + 236’:1 €j. Here the €; are the standard basis vectors
of RS, Asin (1) and (2) above, we will apply our general observation.



To that end, we claim that S := {r,...

,76} is a basis of R®. To show

this, by the two-out-of-three criterion, we can show it spans RSY; in

particular we can express €1, ...,

of S as follows:

€g as linear combinations of elements

ZIRS R SR OO PN
—=T —T —-T T —-T —Tg — €
9 1 9 2 9 3 9 4 9 5 9 6 1
[ PUR PN N SO o

—7 — =T + —T* T T T = €
91 9 93T giTghTg6T "™
1o lo2 1 1 1

—Tr —T9 — 7” 7’ ’f' 7’ = 6
9 1 9 2 9 3 9 4 9 5 9 6 — €3
[ U UL S U o

gl + g2+ g7 — g+ g5+ gi = €
[SS TPE SVOE O U

9 1 9T2 97"3 9T4 97"5 9T6 — 65
L O S PPN VR e
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Problem 4 What’s the angle between the following vectors? Compute the

projection wz(b) in each case.

2 3
(a) @=[2] andb= 1| 4
1 12
4 -1
(b)) a=|—-4| andb= | 4
7 -8
169 -1
. [ -520 - |1
(c) d= 561 and b = 1
425 1
1 0
1 1
I - |1
(d) a= 1 and b = 1
0 1
1 0

Solution: In all cases below we use 6 to denote the angle between @ and b:

10



(a) We know cos(f) = @b 26 _ _ 2 et us use arccos to de-

|a|[b] V9169 3

note the unique bijective function from [—1,1] t [0 7] that satisfies
arccos(cos()) = 6 for all 6 € [0, 7]. Thus 0 = arccos( ) &~ 48.19°. Then

5
. 9
Jecti b i B — o - 26> _ | 52
the projection 7z(b) is mz(b) = Fiks cos(0)d = Fa= | %
26
9
_ @b _ _ -6 _ _ 76 —76\ A
(b) We have cos(f) = FIL NGOG g7 Thus 6 = arccos(gr)
304
. 81
o Co > bl S 76~ —304
159.8°. And the projection is mz(b) = G cos(f)d = —gd = | %1
532
81
_ @b _ 207 _ _ 297 _ 297\ o
(c) We have cos(f) = FE = V71307V = 2vieisor Thus 6 = arccos(; %794307) S
16731
264769
g —51480
o cetiom > - _ 297 — _ | 264769
80.4°. And the projection is mz(b) = e co8(0)d = =g4a570 = | Zrer3g
264769
42075
264769
_ @b _ _2 _ 1 _ 1\ _ e ™
(d) We have cos(0) = GE = Vivi 2 Thus 6 = arccos(5) = 60° (or %

=,

radians). And the projection is 73(b) =
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Problem 5 What’s the length of the vector

0
1

€ R*®?
23
24

Solution: It can easily be proved by induction that > i? = w

11



forallm = 0,1,2,.... Thus the length of this vector is v/02 + 12 + - - - + 242 =
202)(19) _ -
=R =10.

Problem 6 Show that any unit vector & € R™ ! can be written as

cos(¢1)
sin(¢1) cos(¢2)
sin(¢1) sin(¢2) cos(¢s)

>
Il

sin(¢1 ) sin(¢p2) - - - sin(¢n—1) cos(8)

sin(¢q) sin(¢2) - - - sin(¢p—1) sin(h)
with ¢1,d2,...,¢n—1 € [0,7] and 6 € [0,27). Draw a picture for n =1 and
n = 2 to illustrate.

Uy

U2
Solution: Let @ = . be a unit vector in R™*!. We proceed to define

Un+1
O1,02,...,¢0n—1 € [0,7] and 0 € [0,27) so that @ is as in the statement of
the problem. First let us define the ¢;. We will do so recursively. Suppose
that we have already found ¢1,...,¢;—1 € [0, 7] so that

u1 = cos(¢1) (1)
ug = sin(¢1) cos(¢p2)

uj—1 = sin(¢y) sin(p2) - - - sin(Pi—2) cos(¢i—1)
We want to find a ¢; € [0, 7] so that

u; = sin(¢1) sin(ez) - - - sin(pi—1) cos(¢;) (2)
To that end, we claim that for 1 < k <i — 1 we have
sin?(¢1) sin?(¢g) - - -sin®(¢p) = 1 — u? —ul — --- — us. (3)

The case k = 1 of (3) follows from the assumption in (1) that u; = cos(¢1).
So suppose k > 1 and the claim holds for k£ — 1. Then

sin®(¢1) sin®(¢g) - - - sin®(¢) = sin®(¢1) sin®(¢2) - - - sin®(¢p—1)(1 — cos®(¢))
= sin®(¢h1) - - - sin®(p—1) — sin(¢1) - - - sin®(dp—1) cos® (¢z)

=1l—-ur—up—-- —up—1 —ug

12



where in the last line we use our inductive hypothesis and the assump-
tion in (1) that ug = sin®(¢) sin?(¢2) - - - sin?(¢r_1) cos?(¢x). So indeed (3)
holds. Now we proceed to define ¢; to satisfy (2). Note that 4 being a unit
vector is equivalent to u} +u3 + --- +u2; = 1. So in particular we have

2 2 2

First suppose that 1 — u} —u3 — --- —u? ; = 0. Then note that u; = 0
because otherwise uf + u3 + - + uZ,; > 1. Thus in this case we can choose
any ¢; € [0, 7] and (2) will be satisfied, since by (3) we have

sin?(¢y) - -sin®(¢;) =1 —u? —us — - —u? ;=0

which implies
Sin(qbl) Sin(¢2) ce sm(gbl) =0.

So now let us suppose that 0 < 1 —u? —uZ —--- —u? ; < 1. Then note that
O<uf<l—ul—ud——uly,

again by using the fact that @ is a unit vector. Diving through we get

2
U
2
OSl_u2_u2_..._u2 §17
17 U3 i-1

and then taking square roots and using (3) we have

Uj
<= - - <L
~ |sin(¢1) sin(¢2) - - - sin(¢i—1)
So in this case we can define ¢; := arccos (gin(¢1)sin(¢7;i)msin(¢i,1)) € [0, 7]

and we will satisfy (2).
We have now successfully defined ¢y, ..., ¢,—1 € [0, 7] so that

uy = cos(¢1)

uz = sin(¢q) cos(p2)

Up—1 = sin(¢q) sin(¢pa) - - - sin(pp—2) cos(Pn_1)

Moreover, the same argument used to establish (3) still applies to i :=n—1
and so we have

sin® (1) sin®(g2) -+ -sin2(1) = L — e —uwd—---—udy.  (4)

13



We want to find 6 € [0, 27) so that

up = sin(¢1) sin(¢z) - - - sin(én—1) cos(6) (5)
Up+1 = sin(¢y) sin(gs) - - - sin(¢y,—1) sin(0)
As before we have 0 <1—u? —ud —--- —u2_; < 1. Suppose 1 —u} — u3 —

cee— u%_l = 0. Then u, = un+1 = 0 again because u is a unit vector. In

this case we can choose any 6 € [0,27) and we will satisfy (5) because by (4)
we have

sin2(d>1) sin2(¢2) e sinQ(qﬁn,l) =1- u% — u% — = ui_l =0

which implies

sin(¢q) sin(¢p2) - - - sin(¢p—1) = 0.

So now suppose 0 < 1 —u? —u3 —--- —u2_; < 1. Then as before
Un,
0<|= : : <1
| sin(¢1) sin(ez) - - - sin(¢p—1)
Let us define 6 € [0, 27) by
Un, : Un+1
0 — arccos (sin(qbl)sin(qbg)-..sin(d)n,l)) if sin(¢1) sin(g2)- sin(dn_1) > 0,
2m — arccos otherwise.

Un
sin(¢1) sin(p2) - sin(pn—1)

Why does this definition satisfy (5)? Well, it clearly satisfies the first equa-
tion in (5) because

U; Uj

cos <27T - aeees <sm(¢1) sin(gz) ---sin(di_1) )) - <arccos (sin(¢1) sin(¢s)

Uj
~ sin(¢) sin(¢o) - - -sin(p;_1)

because cos is even and has period 27. And as to the second equation in (5)
we can check that

)

sin?(¢y) sin?(¢y) - - - sin?(¢,_1 ) sin?(#) = sin®(¢1) sin®(¢2) - - - sin?(¢p_1)(1 — cos*(h))
= sin?(¢1) - - - sin®(¢p_1) — sin®(¢y) - - - sin® (¢ 1) cos?(8)

2 2

zl—ul—uQ—---—ui_l—uQ

n

.2
- un+1

14



because 1 = Y"1 2. So sin(¢y) sin(ey) - - - sin(éy,_1) sin(f) = Fuy,y1, and
the two cases in our definition 6 deal with this choice of sign.
The case n =1 is the well-known polar coordinates:

ro° " X(@)=cos0
unit circle y¥(0)=sind

The case n = 2 is spherical coordinates:

&

y
\
\
N
X
Problem 7 Suppose U1, s, ...,u € R™ is a collection of vectors such that
A 0 ifi#j
Ui~ Uj = e
1 ifi=j.
Show that i1, Us, ..., u are linearly independent.

Solution: Let 41, us,...,u; € R™ satisfy the above property. Suppose that
oy + aglis + - + apiy =0

for aq,...,a; € R. By taking the dot product of the above equation with
u;, we see that o; = 0. Thus for all i, a; = 0, which means our solution
must’ve been trivial. So indeed the vectors are linearly independent.
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