18.06.28: Complex vector
spaces

Lecturer: Barwick

[ Woerked so haid to understand it that it must be true.

— James Richardson
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From last time ...

I was alluding to a way to make complex multiplication easier to understand.
The idea is this: for any z = a + bi € C, you may consider the matrix

a -b
M, = .
: <b a>

On the newest problem set, you'll show that addition of complex numbers is
addition of these matrices, multiplication of complex numbers is multiplica-
tion of these matrices (!), and one more thing ...



Complex conjugation is the map z ~~» Z that carriesz = a + bitoz = a — bi.
You'll see that Mz = M].

Complex conjugation can be used to extract the real and complex parts of

your complex number:

2bi = z-7Z.
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Complex conjugation also gives you the length of the vector o € R? corre-
sponding to z € C:
I91? = 2Z.

So
A= @exp(i@)

for some (and hence infinitely many) 6 € R.
If z # 0, there is a unique such 8 € [0, 27); this is sometimes called the

argument of z, but it’s annoying to write down a good formula. It’s better to
think of it as an element of R/277Z.
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One last general thing about the complex numbers, just because it’s so impor-
tant.

Theorem (“Fundamental theorem of algebra”). For any polynomial

f@=) az
i=0

with complex coefficients «; such that «,, # 0, there exist complex numbers
wy, ..., w, such that

f(2)=a,(z-w))(z-w,) - (z-w,).

This is actually a theorem of topology, not algebra, but there you go.



Here’s a cool example: f(z) = z" — 1. Let’s find the roots!



The set C" is the set of column vectors

with z; € C. One can add such vectors componentwise, and one can multiply
any such vector with a complex scalar.

So this is the fundamental example of a complex vector space.



Note that R” ¢ C". Now if v € C", then v = vif and only if v € R".



More generally, a complex vector subspace V < C" is a subset such that:

(1) foranyv,w € V,onehasv +w € V;

(2) foranyv € Vandany z € C,one haszv € V.



Vectors vy, ..., Uy span a vector subspace V' < C" over C if and only if every

vector w € V can be written as a C-linear combination of the v;, i.e.,

k
w = z Zivi,
i=1

where each z; € C.
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Similarly, the vectors v, ..., v, are linearly independent over C if and only if
any vanishing C-linear combination

i=1

is a trivial C-linear combination, so that z; = --- = z; = 0.

A C-basis of V is thus a collection of vectors of V' that is linearly independent
over C and spans V over C.
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Let’s do an example to appreciate the distinction. Let’s think of C?, and let’s
think of the complex line

{5

Now C? = R, so that complex line is a real plane:

&—2w=0}cc2

Z]
4 3z, - 2w, =0
L= 2 eR* ! ! c R*.



2
The single vector < 2 ) forms a C-basis of L.

Another legit C-basis would be the single vector <

The vectors

S W O N
w O N O

forms an R-basis of L over R.

1

2i
3i )
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Another example: consider the complex vector subspace W ¢ C* spanned by
i
L)

Here’s an important sentence to parse correctly: W does not have a C-basis
consisting of real vectors.

A real basis for W ¢ R* consists of and

S = = O
o



Proposition. Any complex vector subspace W < C" of complex dimension k

has an underlying real vector space of dimension 2k.

To see why, take a C-basis {wy, ..., wi} of W. Now {w,, iwy, ..., wy, iwy } is an
R-basis of W.
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In the other direction, a real vector subspace V' C R” generates a complex
vector subspace Vo € C", called the complexification; this is the set of all
C-linear combinations of elements of V:

VC = {U)ECH

k

w= Zociv,-,for some o, ..., 0 € C, v, ...,V € V]» .

i=1

Note that not all complex vector subspaces of C" are themselves complexifi-
i

cations; the complex vector subspace W ¢ C? spanned by < i ) provides a

counterexample. (A complex vector space is a complexification if and only if
it has a C-basis consisting of real vectors.)



Now, most importantly, we may speak of complex matrices (i.e., matrices with

complex entries).

All the algebra we've done with matrices over R works perfectly for matrices over
C, without change.
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However, the freedom to contemplate complex matrices offers us new hori-
zons when it comes to questions about eigenspaces and diagonalization. Let’s

A:<(1) ‘01>.

The characteristic polynomial p,(t) = t* + 1 doesn’t have any real roots, so

contemplate the matrix

there’s no hope of diagonalizing A over R.

Over C, however, we find eigenvalues i, —i. Let’s try to diagonalize A.



-1 i

Let’s begin with L; = ker(iI — A) = ker <

1
>. It’s dimension 1, and it’s

spanned by the vector ( 1, )

-1

-1 —i

AndL_; = ker( - 1, ) is dimension 1 and spanned by < 1 )
i
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Note that neither L; nor L_; is a complexification. However, we do have a basis

1 1
<l< , ) , ( ) >} of C? consisting of eigenvectors of A, and writing T, in
—i i

terms of this basis gives us the matrix

(0°)

So A is not diagonalizable over R, but it is diagonalizable over C.
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There’s one more new thing you can do with a complex matrices that doesn’t
quite work for real matrices: you can conjugate their entries. Of particular
import is the conjugate transpose:

A4 = (A) =&,

We'll understand the significance of this operation next time.



