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Shadows are harshest

when there is only one lamp.

— James Richardson



18.06.26: More on similarity and diagonalizability

Let’s get back to similarity.

Suppose I have a basis {~𝑣1,… ,~𝑣𝑛} of R𝑛, and suppose 𝐴 is an 𝑛 × 𝑛 matrix,
giving us a linear map 𝑇𝐴∶R𝑛 R𝑛.

Maybe 𝑇𝐴 is actually more interesting to us than 𝐴, and maybe {~𝑣1,… ,~𝑣𝑛} is
a better basis for us than the standard basis. So we want to express the action
of 𝑇𝐴 entirely in terms of {~𝑣1,… ,~𝑣𝑛}.
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When we look at our chosen basis {~𝑣1,… ,~𝑣𝑛}, we can write each vector𝑇𝐴(~𝑣𝑗)
in a unique fashion as a linear combination of the basis vectors:

𝑇𝐴(~𝑣𝑗) =
𝑛

∑
𝑖=1
𝛽𝑖𝑗~𝑣𝑖.

We could have put all those coefficients together into a new matrix

𝐵 = (𝛽𝑖𝑗).

We say that 𝐵 represents 𝑇𝐴 with respect to the basis {~𝑣1,… ,~𝑣𝑛}.

If we’d done that with the standard basis, we’d have the matrix 𝐴 staring back
at us. But with a different basis, 𝐵 isn’t 𝐴. So how do they relate??
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So, let’s make a nice invertible matrix out of our basis:

𝑉 ≔ ( ~𝑣1 ⋯ ~𝑣𝑛 ) .

We see that
𝐴𝑉 = ( ∑𝑛𝑖=1 𝛽𝑖1~𝑣𝑖 ⋯ ∑

𝑛
𝑖=1 𝛽𝑖𝑛~𝑣𝑖 ) .

On the other hand,

𝑉𝐵 = ( ∑𝑛𝑖=1 𝛽𝑖1~𝑣𝑖 ⋯ ∑
𝑛
𝑖=1 𝛽𝑖𝑛~𝑣𝑖 ) .

So 𝐴𝑉 = 𝑉𝐵, whence 𝐵 = 𝑉−1𝐴𝑉.
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This is a tricky concept. I like to think about this diagram:

R𝑛̂𝑒𝑖 R𝑛̂𝑒𝑖

R𝑛~𝑣𝑖 R𝑛~𝑣𝑖

𝐴

𝑉 𝑉−1

𝐵
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Definition. We say two 𝑛 × 𝑛matrices 𝐴 and 𝐵 are similar if they represent
the same linear transformation with respect to two different bases.

Equivalently,𝐴 and 𝐵 are similar if 𝐵 represents 𝑇𝐴 with respect to some basis.

Equivalently, 𝐴 and 𝐵 are similar if and only if there is some invertible matrix
𝑉 such that

𝐵 = 𝑉−1𝐴𝑉.
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Let’s do a quick example. Consider𝐴 = (
5 −3
2 −2
), and let’s write the matrix

𝐵 that represents 𝑇𝐴 with respect to the basis {~𝑣1 = (
3
1
) ,~𝑣2 = (

1
2
)}.
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𝐵 = (
3 1
1 2
)
−1

(
5 −3
2 −2
)(
3 1
1 2
)

= 1
5
(
2 −1
−1 3

)
−1

(
5 −3
2 −2
)(
3 1
1 2
)

= (
4 0
0 −1
) .

So our 𝐴 is actually similar to a diagonal matrix.
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And what does that mean? The matrix 𝐵 that represents 𝐴 with respect to
{~𝑣1,~𝑣2} is diag(4, −1), so:

𝐴~𝑣1 = 4~𝑣1 and 𝐴~𝑣2 = −~𝑣2.

So the eigenvalues for the diagonal matrix𝐵 are also eigenvalues for thematrix
𝐴.
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In other words,~𝑣1 and~𝑣2 form a basis of eigenvectors for 𝐴. So 𝐴 is diagonal-
izable.
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In fact, similar matrices always have the same eigenvalues, because they have
the same characteristic polynomials:

𝑝𝑉−1𝐴𝑉(𝑡) = det(𝑡𝐼 − 𝑉−1𝐴𝑉) = det(𝑡𝑉−1𝑉 − 𝑉−1𝐴𝑉)

= det(𝑉−1(𝑡𝐼 − 𝐴)𝑉)

= (det𝑉)−1 det(𝑡𝐼 − 𝐴) det𝑉

= det(𝑡𝐼 − 𝐴) = 𝑝𝐴(𝑡).
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So now we understand our terminology: an 𝑛 × 𝑛 matrix 𝐴 is diagonaliz-
able if and only if it is similar to a diagonal matrix diag(𝜆1,… , 𝜆𝑛), where
𝜆1,… , 𝜆𝑛 are the eigenvalues of 𝐴 with multiplicity.
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In other words, the following are logically equivalent for an 𝑛 × 𝑛matrix 𝐴:

(1) 𝐴 is diagonalizable.

(2) There exists a basis for R𝑛 consisting of eigenvectors of 𝐴.

(3) There is a basis {~𝑣1,… ,~𝑣𝑛} for R𝑛 such that the matrix that represents 𝑇𝐴
with respect to {~𝑣1,… ,~𝑣𝑛} is diagonal.

(4) 𝐴 is similar to a diagonal matrix.

(5) 𝐴 is similar to the diagonal matrix diag(𝜆1,… , 𝜆𝑛), where the 𝜆𝑖’s are the
eigenvalues of 𝐴, taken with multiplicity.

(6) There is an invertible 𝑛 × 𝑛matrix 𝑉 such that diag(𝜆1,… , 𝜆𝑛) = 𝑉−1𝐴𝑉.
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There’s one more condition I’d like to add to this list. To describe it, we need
some notation, which may work in unfamiliar way: suppose𝑉,𝑊,𝑋 are three
vector subspaces of R𝑛, and suppose 𝑉 ⊆ 𝑋 and𝑊 ⊆ 𝑋. Then we write

𝑋 = 𝑉 ⊕𝑊

if every vector ~𝑥 ∈ 𝑋 can be written uniquely as a sum~𝑣 + ~𝑤 with~𝑣 ∈ 𝑉 and
~𝑤 ∈𝑊.
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Equivalently, 𝑋 = 𝑉 ⊕𝑊 if 𝑉 ∩𝑊 = {0} and if every vector ~𝑥 ∈ 𝑋 can be
written as a sum~𝑣 + ~𝑤.

In other words, if 𝑉 ∩𝑊 = {0}, then

𝑉 ⊕𝑊 = {~𝑥 ∈ R𝑛 | ~𝑥 = ~𝑣 + ~𝑤, where~𝑣 ∈ 𝑉 and ~𝑤 ∈𝑊}.
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The important fact here is that

dim(𝑉 ⊕𝑊) = dim(𝑉) + dim(𝑊).

That’s because I can take a basis {~𝑣1,… ,~𝑣𝑘} of 𝑉 and a basis {~𝑤1,… , ~𝑤ℓ} of
𝑊, and I can put them together into a basis

{~𝑣1,… ,~𝑣𝑘, ~𝑤1,… , ~𝑤ℓ}.

So, in fact, if𝑉,𝑊,𝑋 are three vector subspaces ofR𝑛 with𝑉 ⊆ 𝑋 and𝑊 ⊆ 𝑋,
then𝑋 = 𝑉⊕𝑊 if and only if: (1)𝑉∩𝑊 = {0} and (2) dim𝑉+dim𝑊 = dim𝑋.
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Note that if 𝜆 and 𝜇 are two different eigenvalues of an 𝑛 × 𝑛matrix 𝐴, then
𝐿𝜆 ∩ 𝐿𝜇 = {0}; indeed, if~𝑣 ∈ 𝐿𝜆 ∩ 𝐿𝜇, then it is an eigenvector for both 𝜆 and
𝜇. So

𝜆~𝑣 = 𝐴~𝑣 = 𝜇~𝑣.

Thus (𝜆 − 𝜇)~𝑣 = ~0, and since 𝜆 − 𝜇 ≠ 0, we may divide by it to see that~𝑣 = ~0.
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Now we can add the last of our equivalent conditions for 𝐴 to be diagonaliz-
able:

(7) If 𝜆1,… , 𝜆𝑘 are the eigenvalues of 𝐴, then

R𝑛 = 𝐿𝜆1 ⊕⋯ ⊕ 𝐿𝜆𝑘 .

(The cool kids call this the spectral decomposition.)
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Proposition. An 𝑛× 𝑛matrix with 𝑛 distinct real eigenvalues is diagonalizable.

Proof. Let 𝜆1,… , 𝜆𝑛 be the distinct eigenvalues. Let’s look at the correspond-
ing eigenspaces

𝐿𝜆𝑖 = ker(𝜆𝑖𝐼 − 𝐴),

each of which has dim(𝐿𝜆𝑖 ) ≥ 1.

We have already seen that if 𝑖 ≠ 𝑗, then 𝐿𝜆𝑖 ∩ 𝐿𝜆𝑗 = {0}.
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So we have R𝑛, which is 𝑛-dimensional, and we have 𝑛 different subspaces 𝐿𝜆𝑖 ,
each of which has dimension ≥ 1, and no two of which intersect nontrivially.
So

dim(𝐿𝜆1 ⊕⋯ ⊕ 𝐿𝜆𝑛 ) = dim(𝐿𝜆1 ) + ⋯ + dim(𝐿𝜆𝑛 ) ≤ 𝑛.

But the only way for that to happen is if each dim(𝐿𝜆𝑖 ) = 1, in which case their
sum is exactly 𝑛. Hence

R𝑛 = 𝐿𝜆1 ⊕⋯ ⊕ 𝐿𝜆𝑛 ,

and so 𝐴 is diagonalizable.
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So let’s think again about our two obstructions to diagonalizability of 𝐴:

(1) Non-real eigenvalues.

(2) Repeated eigenvalues with an undersized eigenspace.

Spectral theorems are how we deal with point (2). We just proved one: an 𝑛× 𝑛
matrix with 𝑛 distinct real eigenvalues is diagonalizable over R.Next time, we’ll
prove another: a symmetric matrix is diagonalizable over R. Eventually, we’ll
pass to the complex numbers, and do linear algebra there.


