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Let’s get back to similarity.

Suppose I have a basis {v;, ..., 0,} of R”, and suppose A is an n X n matrix,
giving us a linear map T,;: R” — R".

Maybe T, is actually more interesting to us than A, and maybe {7}, ...,0,} is
a better basis for us than the standard basis. So we want to express the action

—

of T, entirely in terms of {U}, ..., U, }.
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When we look at our chosen basis {U}, ..., U,,}, we can write each vector T' A(D’j)

in a unique fashion as a linear combination of the basis vectors:

n
TA(I_’}') = Zﬁijﬂi'
i=1
We could have put all those coefficients together into a new matrix

We say that B represents T, with respect to the basis {U;, ..., U,}.

If wed done that with the standard basis, wed have the matrix A staring back
at us. But with a different basis, B isn’t A. So how do they relate??



So, let's make a nice invertible matrix out of our basis:

V = ( l_;l 500 l_;n ) .
We see that
AV =( w1 Bati 0 XL Bl )
On the other hand,
VB = ( i Bt o XL Bl ) .

So AV = VB, whence B=V1AV.



This is a tricky concept. I like to think about this diagram:
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Definition. We say two n x n matrices A and B are similar if they represent
the same linear transformation with respect to two different bases.

Equivalently, A and B are similar if B represents T4, with respect to some basis.
Equivalently, A and B are similar if and only if there is some invertible matrix

V such that
B=V1lAV.



5 -3
Let’s do a quick example. Consider A = < 3 ), and let’s write the matrix

3 1
B that represents T, with respect to the basis {171 = < ) ) Uy = ( 5 )}
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So our A is actually similar to a diagonal matrix.
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And what does that mean? The matrix B that represents A with respect to
{0,,0,} is diag(4, -1), so:

Aljl = 41_;1 and Aaz = _172.

So the eigenvalues for the diagonal matrix B are also eigenvalues for the matrix
A.



In other words, ¥, and U, form a basis of eigenvectors for A. So A is diagonal-

izable.



In fact, similar matrices always have the same eigenvalues, because they have

the same characteristic polynomials:

pv-1av(t) = det(t] - V' AV)

det(tVV -V 1AV)
det(VI(tI - A)V)

(det V)7l det(tI — A) detV
det(t] — A) = p,(t).
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So now we understand our terminology: an n x n matrix A is diagonaliz-
able if and only if it is similar to a diagonal matrix diag(A,, ..., A,,), where
AL, ..., A, are the eigenvalues of A with multiplicity.
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In other words, the following are logically equivalent for an n x n matrix A:
(1) Ais diagonalizable.
(2) There exists a basis for R” consisting of eigenvectors of A.

(3) There is a basis {7, .. for R” such that the matrix that represents T

U0,
with respect to {v}, ..., U,} is diagonal.

(4) Ais similar to a diagonal matrix.

(5) Ais similar to the diagonal matrix diag(A,, ..., A,,), where the A;’s are the
eigenvalues of A, taken with multiplicity.

(6) There is an invertible n x n matrix V such that diag(A;, ..., A,) = V1AV,
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There’s one more condition I'd like to add to this list. To describe it, we need
some notation, which may work in unfamiliar way: suppose V, W, X are three
vector subspaces of R", and suppose V' € X and W < X. Then we write

X=VeoeW

if every vector X € X can be written uniquely as a sum v + w with v € V and
wew.



Equivalently, X = Ve W if V. N W = {0} and if every vector X € X can be
written as a sum U + @.

In other words, if V. N W = {0}, then

VoW ={X¥eR"|X=0U+w, wherev € Vand w € W}.
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The important fact here is that
dim(Ve W) = dim(V) + dim(W).

That’s because I can take a basis {v;, ..., U} of V and a basis {&;, ..., W,} of
W, and I can put them together into a basis

- o —

{U1, ..., 0 Wy, ..., We}.

So, in fact, if V, W, X are three vector subspaces of R” with V € Xand W ¢ X,
then X = VeW ifand onlyif: (1) VNW = {0} and (2) dim V+dim W = dim X.



Note that if A and p are two different eigenvalues of an n x n matrix A, then
LynL, ={0} indeed, if v € L) N L, then it is an eigenvector for both A and
u. So

A = AD = ud.

Thus (A — 4)¥ = 0, and since A — p # 0, we may divide by it to see that # = 0.



Now we can add the last of our equivalent conditions for A to be diagonaliz-
able:

(7) If Ay, ..., A are the eigenvalues of A, then
R" = L"l D - @ka.

(The cool kids call this the spectral decomposition.)
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Proposition. An nxn matrix with n distinct real eigenvalues is diagonalizable.

Proof. Let Ay, ..., A, be the distinct eigenvalues. Let’s look at the correspond-
ing eigenspaces
Ly, =ker(L;,I - A),

each of which has dim(L,\i) > 1.

We have already seen that ifi # j, then L) N L, = {o}.
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So we have R", which is n-dimensional, and we have n different subspaces L, ,
each of which has dimension > 1, and no two of which intersect nontrivially.
So

dim(L, & &L, ) =dim(L, )+ - +dim(L, ) <n.

But the only way for that to happen is if each dim(L, ) = 1, in which case their
sum is exactly n. Hence

R'=L, ®oL,,

and so A is diagonalizable. O]
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So let’s think again about our two obstructions to diagonalizability of A:
(1) Non-real eigenvalues.
(2) Repeated eigenvalues with an undersized eigenspace.

Spectral theorems are how we deal with point (2). We just proved one: an nxn
matrix with n distinct real eigenvalues is diagonalizable over R. Next time, we'll
prove another: a symmetric matrix is diagonalizable over R. Eventually, we'll
pass to the complex numbers, and do linear algebra there.



