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Ambiguity is the haven of the indolent.



18.06.25: Similarity and diagonalizability

Let’s compute the eigenvalues and eigenspaces of the following matrices.

𝐴 = (
2 1
0 2
)
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𝐴 = (
2 1
0 2
)

In this case, we have a repeated eigenvalue, 2. So the eigenspace is the kernel
of

𝐿1 = ker(
0 −1
0 0
) ,

which we note with a grimace is only 1-dimensional: 𝐿1 = ⟨ ̂𝑒1⟩.

We have disproved our conjecture. It is not true that the multiplicity of a root
equals the dimension of the eigenspace.
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𝐵 = (
3 2 0
2 3 0
0 0 2

)
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We have three eigenvalues for 𝐵 = (
3 2 0
2 3 0
0 0 2

): 5, 1, and 2. We have

𝐿5 = ⟨ ̂𝑒1 + ̂𝑒2⟩;

𝐿1 = ⟨− ̂𝑒1 + ̂𝑒2⟩;

𝐿2 = ⟨ ̂𝑒3⟩.

In this case, we have a basis of eigenvectors.
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𝑃 = (

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

)
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𝑃 = (

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

)

Let’s take some time with this.

𝑝𝑃(𝑡) = det(

𝑡 0 −1 0
0 𝑡 − 1 0 0
−1 0 𝑡 0
0 0 0 𝑡 − 1

) = (𝑡−1) det(
𝑡 0 −1
0 𝑡 − 1 0
−1 0 𝑡

).
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We can still do column operations.

(
𝑡 0 −1
0 𝑡 − 1 0
−1 0 𝑡

) (
𝑡 − 𝑡−1 0 −1
0 𝑡 − 1 0
0 0 𝑡

),

whence

det(
𝑡 0 −1
0 𝑡 − 1 0
−1 0 𝑡

) = (𝑡2 − 1)(𝑡 − 1).

(You’re actually doing the column operations in the field R(𝑡), which is the
fraction field of the polynomial ring R[𝑡]. OOOH FANCY!)
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In any case, we’ve got eigenvalues 1 and −1, and the eigenspaces are

𝐿1 = ⟨ ̂𝑒2, ̂𝑒4, ̂𝑒1 + ̂𝑒3⟩;

𝐿−1 = ⟨− ̂𝑒1 + ̂𝑒3⟩.

Again we have a basis of eigenvectors.
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Definition. We will say that an 𝑛 × 𝑛 matrix 𝐴 is diagonalizable (over R) if
there exists a basis of R𝑛 consisting of real eigenvectors for 𝐴.

This terminology may seem odd right now, but soon we will get to the bottom of
it!
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The examples we’ve thought about have located two obstructions to diagonal-
izability over R

(1) non-real eigenvalues: the matrix𝐷 = (
0 −1
1 0
) has characteristic poly-

nomial 𝑡2 + 1. This has no real roots, so𝐷 has no real eigenvalues, and no
real eigenvectors.
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(2) repeated eigenvalues, sometimes: the matrices 𝐴 = (
2 1
0 2
) and 𝐴′ =

(
2 0
0 2
) each have characteristic polynomial (𝑡−2)2, but the eigenspace

of the first is 1-dimensional, whereas the eigenspace of the second is 2-
dimensional.
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The first issue is really not such a big deal if you like complex numbers. We’ll
learn that we canmake sense of linear algebra over the set of complex numbers,
C, as well, and then you have no problem finding a basis of C2 consisting of
eigenvectors of the matrix𝐷.

We say that𝐷 is diagonalizable over C, but not over R.
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The second issue ismore subtle. To understand it better, we have to understand
similarity.

More generally, suppose I have a basis {~𝑣1,… ,~𝑣𝑛} of R𝑛, and suppose 𝐴 is an
𝑛 × 𝑛matrix, giving us a linear map 𝑇𝐴∶R𝑛 R𝑛.

Maybe 𝑇𝐴 is actually more interesting to us than 𝐴, and maybe {~𝑣1,… ,~𝑣𝑛} is
a better basis for us than the standard basis. So we want to express the action
of 𝑇𝐴 entirely in terms of {~𝑣1,… ,~𝑣𝑛}.
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When we look at our chosen basis {~𝑣1,… ,~𝑣𝑛}, we can write each vector𝑇𝐴(~𝑣𝑗)
in a unique fashion as a linear combination of the basis vectors:

𝑇𝐴(~𝑣𝑗) =
𝑛

∑
𝑖=1
𝛽𝑖𝑗~𝑣𝑖.

We could have put all those coefficients together into a new matrix

𝐵 = (𝛽𝑖𝑗).

We say that 𝐵 represents 𝑇𝐴 with respect to the basis {~𝑣1,… ,~𝑣𝑛}.

If we’d done that with the standard basis, we’d have the matrix 𝐴 staring back
at us. But with a different basis, 𝐵 isn’t 𝐴. So how do they relate??



18.06.25: Similarity and diagonalizability

So, let’s make a nice invertible matrix out of our basis:

𝑉 ≔ ( ~𝑣1 ⋯ ~𝑣𝑛 ) .

We see that
𝐴𝑉 = ( ∑𝑛𝑖=1 𝛽𝑖1~𝑣𝑖 ⋯ ∑

𝑛
𝑖=1 𝛽𝑖𝑛~𝑣𝑖 ) .

On the other hand,

𝑉𝐵 = ( ∑𝑛𝑖=1 𝛽𝑖1~𝑣𝑖 ⋯ ∑
𝑛
𝑖=1 𝛽𝑖𝑛~𝑣𝑖 ) .

So 𝐴𝑉 = 𝑉𝐵, whence 𝐵 = 𝑉−1𝐴𝑉.
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This is a tricky concept. I like to think about this diagram:

R𝑛̂𝑒𝑖 R𝑛̂𝑒𝑖

R𝑛~𝑣𝑖 R𝑛~𝑣𝑖

𝐴

𝑉 𝑉−1

𝐵
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Definition. We say two 𝑛 × 𝑛matrices 𝐴 and 𝐵 are similar if they represent
the same linear transformation with respect to two different bases.

Equivalently,𝐴 and 𝐵 are similar if 𝐵 represents 𝑇𝐴 with respect to some other
basis.

Equivalently, 𝐴 and 𝐵 are similar if and only if there is some invertible matrix
𝑉 such that

𝐵 = 𝑉−1𝐴𝑉.
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Let’s do a quick example. Consider𝐴 = (
5 −3
2 −2
), and let’s write the matrix

𝐵 that represents 𝑇𝐴 with respect to the basis {~𝑣1 = (
3
1
) ,~𝑣2 = (

1
2
)}.
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𝐵 = (
3 1
1 2
)
−1

(
5 −3
2 −2
)(
3 1
1 2
)

= 1
5
(
2 −1
−1 3

)
−1

(
5 −3
2 −2
)(
3 1
1 2
)

= (
4 0
0 −1
) .

So our 𝐴 is actually similar to a diagonal matrix.
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And what does that mean? The matrix 𝐵 that represents 𝐴 with respect to
{~𝑣1,~𝑣2} is diag(4, −1), so:

𝐴~𝑣1 = 4~𝑣1 and 𝐴~𝑣2 = −~𝑣2.
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In other words,~𝑣1 and~𝑣2 form a basis of eigenvectors for 𝐴. So 𝐴 is diagonal-
izable.

And now we understand our terminology: an 𝑛 × 𝑛matrix is diagonalizable
if and only if it is similar to a diagonal matrix.


