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So here’s an 𝑛 × 𝑛matrix

𝐴 = ( ~𝑣1 ⋯ ~𝑣𝑛 ) ,

and we have this number

det(𝐴) = det (~𝑣1,… ,~𝑣𝑛) ∈ R

that measures the signed 𝑛-dimensional volume of the parallelopiped spanned
by~𝑣1,… ,~𝑣𝑛.

Let’s list the things we know about det(𝐴).
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(1) Normalization. The identity matrix has determinant 1:

det(𝐼) = det ( ̂𝑒1,⋯ , ̂𝑒𝑛) = 1.

(2) Multilinearity. For any real numbers 𝑟, 𝑠 ∈ R,

det (~𝑣1,⋯ , 𝑟~𝑥𝑖 + 𝑠~𝑦𝑖,⋯ ,~𝑣𝑛) = 𝑟 det (~𝑣1,⋯ ,~𝑥𝑖,⋯ ,~𝑣𝑛)

+𝑠 det (~𝑣1,⋯ ,~𝑦𝑖,⋯ ,~𝑣𝑛) .
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(3) Alternation. The determinant

det (~𝑣1,⋯ ,⋯ ,~𝑣𝑛) = 0

if any two of the~𝑣𝑖s are equal.

These are the core, defining properties of det.
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Here are more properties, which we deduced from the three core properties
above:

(4) Multiplying a row or column by a number 𝑟 ∈ R multiplies the determi-
nant by that 𝑟.

(5) Swapping two rows or columns in 𝐴multiplies the determinant by a −1.

(6) Adding amultiple of a row or column onto another row or column doesn’t
change the determinant.
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And here are some general computational facts we extract from these proper-
ties.

(8) det(𝐴) ≠ 0 if and only if 𝐴 is invertible.

(9) det(𝑀𝑁) = det(𝑀) det(𝑁).

(10) det(𝐴⊺) = det(𝐴). (Why?)

(11) det diag(𝜆1,… , 𝜆𝑛) = ∏
𝑛
𝑖=1 𝜆𝑖.

(12) More generally, if𝐴 is triangular, then det(𝐴) is the product of the entries
along the diagonal. (Why?)
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Let’s compute the determinant of the following matrices:

(
1 2 4
1 3 9
1 4 16

) , (

1 1 1 2
1 1 2 2
1 2 2 3
2 2 3 4

)

(

1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

) , (

1 2 5 14
2 5 5 14
5 14 42 132
14 42 132 429

)
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I was half-joking about the last two; this is actually a neat little piece of math-
ematics: there’s only one sequence of integers 𝑐0, 𝑐1, 𝑐2,… such that for any
𝑛 ≥ 1,

det(𝑐𝑖+𝑗−2) = det(𝑐𝑖+𝑗−1) = 1.

These are called the Catalan numbers, and your mathematical life isn’t com-
plete until you’ve read about them! (I was going to put a problem about these
on the homework, but I thought that might be too much.)
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Suppose 𝜎∶ {1,… , 𝑛} {1,… , 𝑛} a permutation of {1,… , 𝑛} – i.e., a bijection
from that set to itself.

One can express a permutation very compactly, by writing down the matrix

𝑃𝜎 = ( ̂𝑒𝜎(1) ⋯ ̂𝑒𝜎(𝑛) )

called the permutation matrix corresponding to 𝜎.

This is great, because matrix multiplication corresponds to composition of
permutations:

𝑃𝜎∘𝜏 = 𝑃𝜎𝑃𝜏 and 𝑃𝑖𝑑 = 𝐼.
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Also, these matrices are orthogonal; in fact,

𝑃⊺𝜎 = 𝑃−1𝜎 = 𝑃𝜎−1 .
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Here’s a permutation matrix for 𝑛 = 5:

(

(

̂𝑒2
̂𝑒4
̂𝑒1
̂𝑒3
̂𝑒5

)

)

=(

(

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

)

)

.

What’s its determinant?
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This is a general pattern: the determinant of a permutation matrix 𝑃𝜎 is called
the sign of the permutation 𝜎:

sgn(𝜎) ≔ det(𝑃𝜎)

In effect, it’s
(−1)number of swaps in 𝜎.

What’s weird about this is that you can imagine performing more or fewer
swaps to get sigma. The magic of determinants is telling you that the parity of
the number of swaps stays the same!

Note that sgn(𝜎) = sgn(𝜎−1). (Why?)
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It turns out that permutations give you a formula for the determinant of any
matrix 𝐴 = ( ~𝑣1 ⋯ ~𝑣𝑛 ). Let’s see why.

First, the 𝑗-th column~𝑣𝑗 can be written as

~𝑣𝑗 =
𝑛

∑
𝑘=1
𝑎𝑘,𝑗 ̂𝑒𝑘.
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The multilinearity of det can then be deployed:

det(𝐴) = det(
𝑛

∑
𝑘(1)=1
𝑎𝑘(1),𝑗 ̂𝑒𝑘(1),… ,

𝑛

∑
𝑘(𝑛)=1
𝑎𝑘(𝑛),𝑗 ̂𝑒𝑘(𝑛))

=
𝑛

∑
𝑘(1)=1
⋯
𝑛

∑
𝑘(𝑛)=1
(
𝑛

∏
𝑖=1
𝑎𝑘(𝑖),𝑖) det( ̂𝑒𝑘(1),… , ̂𝑒𝑘(𝑛))

Now all those sums can be combined into one sum. You’re summing over the
set 𝐸𝑛 of all maps 𝑘∶ {1,… , 𝑛} {1,… , 𝑛}:

det(𝐴) = ∑
𝑘∈𝐸𝑛

(
𝑛

∏
𝑖=1
𝑎𝑘(𝑖),𝑖) det( ̂𝑒𝑘(1),… , ̂𝑒𝑘(𝑛)).
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det(𝐴) = ∑
𝑘∈𝐸𝑛

(
𝑛

∏
𝑖=1
𝑎𝑘(𝑖),𝑖) det( ̂𝑒𝑘(1),… , ̂𝑒𝑘(𝑛)).

Now we use the alternatingness: if any two columns are equal, then the de-
terminant is zero. So any summand in which 𝑘∶ {1,… , 𝑛} {1,… , 𝑛} is not
injective doesn’t appear:

det(𝐴) = ∑
𝜎∈𝛴𝑛

(
𝑛

∏
𝑖=1
𝑎𝜎(𝑖),𝑖) det( ̂𝑒𝜎(1),… , ̂𝑒𝜎(𝑛)),

where 𝛴𝑛 is the set of permutations of {1,… , 𝑛}.
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Now we have:

det(𝐴) = ∑
𝜎∈𝛴𝑛

(
𝑛

∏
𝑖=1
𝑎𝜎(𝑖),𝑖) det( ̂𝑒𝜎(1),… , ̂𝑒𝜎(𝑛))

= ∑
𝜎∈𝛴𝑛

(
𝑛

∏
𝑖=1
𝑎𝜎(𝑖),𝑖) det(𝑃𝜎)

= ∑
𝜎∈𝛴𝑛

sgn(𝜎) (
𝑛

∏
𝑖=1
𝑎𝜎(𝑖),𝑖) .
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det(𝐴) = ∑
𝜎∈𝛴𝑛

sgn(𝜎) (
𝑛

∏
𝑖=1
𝑎𝜎(𝑖),𝑖)

There it is – the Leibniz formula for the determinant.

Do you care? Well, if you’re trying to program a computer to compute deter-
minants, no. Evaluating this formula involves 𝛺(𝑛! 𝑛) operations. Gaussian
elimination uses 𝑂(𝑛3) operations. We have a winner.

On the other hand, the fact that there is a formula is vaguely reassuring. But
there’s another advantage …
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Think of the determinant as a function fromR𝑛
2

R; this formula expresses
that function as a polynomial in 𝑛2 variables. That means that it’s continuous
and infinitely differentiable. So this leads us to the following result:

Proposition. Suppose 𝐴 = (𝑎𝑖,𝑗) an invertible 𝑛 × 𝑛matrix. Then there exists
an 𝜀 > 0 such that if 𝐴′ = (𝑎′𝑖,𝑗) is an 𝑛 × 𝑛 matrix such that |𝑎′𝑖,𝑗 − 𝑎𝑖,𝑗| < 𝜀,
then 𝐴′ is invertible too.

That is, invertible matrices are stable under small perturbations.
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Here’s another wacky-sounding consequence. Suppose 𝐿 ⊆ R𝑛
2
is a line. Then

if there exists one point on 𝐿 that corresponds to an invertible matrix, then all
but finitely many points on 𝐿 correspond to invertible matrices.
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Question. Suppose 𝐴 an 𝑛 × 𝑛matrix. For how many real numbers 𝑡 ∈ R is
𝐴 + 𝑡𝐼 is invertible (none, finitely many, infinitely many, all)?


