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18.06.20: Projections and Gram—Schmidt

Once again ...the Gram-Schmidt orthogonalization/orthonormalization pro-
cess:

(1) We start with the vector ;. The only problem there is that it’s not a unit

—

vector. So we take i/, := U}, and we normalize it: i1, = —=—1.
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(2) Next, we take the vector ¥,, and we remove the best approximation to U,
that lies in W;:

— —

Uy = U, =y, (U3) = U, — 715, (1),

and we normalize it: &I, = ”g—luﬁz.
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(3) Now, we take v5. Here we have

— =

Ui = U — Ty, (Us) = U3 — 717, (U3) — 773,(03),

and we normalize: ii; = m%.
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(4) We can keep doing this. We write

U;) =1; - Us (U) == AN @),



Animation in R? ... stolen from Wikipedia!


https://upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif
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Let’s look at this collection {v;, U,, U3, U} of 4 linearly independent vectors in
R®:

1 0 0 0
1 1 0 0
0 : 1 3 1 . 0 )
0 0 1 1
0 0 0 1

and let’s begin by just orthogonalizing it, without worrying about normalizing.



There are 4 steps:

(1) We won't even touch the first vector:
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Il
S O O =



(2) Next, let's remove the projection of U, onto #; from v,:

0 1
1 1
= 1 |-=| o |= 1
0 0
0 0

-1/2
1/2



(3) Next, we remove the projections of U; onto #, and i, from vj:

0 -1/2 1/3

0 i 1/2 -1/3

ﬁ\ = 1 =)= —= 1 = 1/3
3 32 /
1 0 1
0 0 0



(4) Finally, we remove the projections of U, onto i, ti, and ii; from U:

0 1/3 -1/4
0 1 -1/3 1/4
i, = 0 -0-0-— 1/3 = -1/4
4 3 / /
1 1 1/4
1 0 1
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This gives us our desired orthogonal collection of vectors:

1 -1/2 1/3 ~1/4

1 1/2 ~1/3 1/4

o |, 1 , 1/3 , -1/4 ,
0 0 1 1/4

0 0 0 1

and we note with pride that each /; here can be written as a linear combination
of vy, ..., ;. Cool.
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1
Suppose I want to project the vector b= 0 |ontothe plane W given by

1
the equation x — y + z = 0. Here’s what I have to do:

1. Find a basis {v;, U,} for that plane. That’s the kernel of the 1 x 3 matrix
(1 -1 1)

2. To compute projections, were supposed to work with an orthogonal
basis, but {}, U,} probably won’t be orthogonal, so we'll have to orthog-
onalize to get a new basis {ii}, i}

3. Finally, we can compute nW(E) =7y (5) + 7y, (5).

Computationally, this approach may not make you very happy.
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We can be more efficient by abstracting our process some. (This is a general
lesson in math! Well-adapted abstractions yield efficiency!)

If we're projecting a vector b € R" onto a k-dimensional subspace W ¢ R”
spanned by some linearly independent (but not necessarily orthogonal!!) vec-
tors d,, ..., dy, then we know that the difference b- ﬂw(l;) will be perpindic-
ular to W. That means it will be perpindicular to each element of our basis
Ay ..., dy.
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So we have:
(@) (b - my (b)) = d; - (b-my (b)) =0
for each i. Putting all k of those equations gives us
AT(b - my (b)) = 0,

whereAz( a, - a ) (Note that A is an n x k matrix, so ATisak x n

matrix.) Thus
AT = ATy, ().

There are probably lots of vectors ¢ out there such that ATb = ATZ, but one
thing singles out our friend 7y, (b): it lies in W! That is, it is in the image of A.
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So ... there’s some vector @ € R such that rrW(I;) = Aw, and for this vector

we have
ATh = ATA®D.

Now here’s the (actually kind of surprising) fact: the fact that the vectors
dy, ..., dy are linearly independent actually implies that AT A (whichisa k x k
matrix) is invertible. That means that the equation above actually uniquely
specifies @ in terms of b.



We can thus write a formula for @:

W = (ATA) T ATD,
and we get a formula for nw(l;) as well:

1y (B) = AW = A(ATA) AT,
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Let’s appreciate how good this is: let’s write a formula for the projection of any
vector b € R® onto the plane W given by the equation x — y + z = 0. Here’s

what I have to do:

1. Find a basis {v;, U,} for that plane. That’s the kernel of the 1 x 3 matrix
(1 -1 1)

2. Now we put that basis into a matrix A, and we compute A(ATA) ' AT,

Bam! One-stop shopping for projections.



We can use this to modify Gram-Schmidt slightly. Let’s try it with

1 0 0 0
1 1 0 0
0 > 1 g 1 g 0 )
0 0 1 1
0 0 0 1



