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A collection of vectors~𝑣1,… ,~𝑣𝑘 ∈ R𝑛 are said to be orthogonal if any two of
them are perpindicular, i.e., if

~𝑣𝑖 ⋅~𝑣𝑗 = 0 if 𝑖 ≠ 𝑗.

More particularly,~𝑣1,… ,~𝑣𝑘 ∈ R𝑛 are said to be orthnormal if any one of them
is a unit vector, and any two of them are perpindicular, i.e., if

~𝑣𝑖 ⋅~𝑣𝑗 = 𝛿𝑖𝑗 = {
0 if 𝑖 ≠ 𝑗;
1 if 𝑖 = 𝑗.
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Recall from the first problem set that an orthonormal collection of vectors
is linearly independent. Of course, there are lots of linearly independent col-
lections of vectors that aren’t orthonormal. That’s an issue when it comes to
understanding their geometry.
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Why? Well, suppose we have a vector subspace𝑊 ⊆ R𝑛, and suppose we have
an orthonormal basis {𝑢1,… , 𝑢𝑘} of𝑊. So take some vectors ~𝑎,~𝑏 ∈ 𝑊 and
write them as

~𝑎 =
𝑘

∑
𝑖=1
𝑎𝑖𝑢𝑖 and ~𝑏 =

𝑘

∑
𝑖=1
𝑏𝑖𝑢𝑖.

We then find

~𝑎 ⋅~𝑏 =
𝑘

∑
𝑖=1
𝑎𝑖𝑏𝑖.

In other words, the geometry of ~𝑎 and~𝑏 can be extracted with a minimum of
thought from these coefficients.
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But now we run into a problem: when we’re thinking about the kinds of bases
for subspaces we can get our hands on, nothingmakes themorthonormal. Our
ways of computing kernels of bases, for example, don’t ensure any orthonor-
mality.

So there’s the question: we’d like a way of taking some linearly independent vec-
tors~𝑣1,… ,~𝑣𝑘 ∈ R𝑛 and generating a new, orthonormal, collection of vectors
𝑢1,… , 𝑢𝑘 ∈ R𝑛 such that for any 𝑖, we have

im ( 𝑢1 … 𝑢𝑖 ) = im ( ~𝑣1 … ~𝑣𝑖 ) .
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Recall: the projection of a vector~𝑏 onto a vector ~𝑎 is the vector

𝜋~𝑎(~𝑏) ≔ (𝑎 ⋅~𝑏)𝑎 =
~𝑎 ⋅~𝑏
~𝑎 ⋅~𝑎

~𝑎.

.

~𝑎

~𝑏

𝜋~𝑎(~𝑏)
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Wespoke a little about this, butwe let’s examinemore. First of all, what happens
if you scale the vector ~𝑎 onto which you’re projecting?

𝜋𝑟~𝑎(~𝑏) =
(𝑟~𝑎) ⋅~𝑏
(𝑟~𝑎) ⋅ (𝑟~𝑎)

(𝑟~𝑎) = 𝑟(
~𝑎 ⋅~𝑏)
𝑟2(~𝑎 ⋅~𝑎)

(𝑟~𝑎) =
~𝑎 ⋅~𝑏
~𝑎 ⋅~𝑎

~𝑎 = 𝜋~𝑎(~𝑏).

So we can think of this not as the projection of~𝑏 onto ~𝑎, but as the projection
of~𝑏 onto the line 𝐿 spanned by ~𝑎. We write 𝜋𝐿(~𝑏).
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Next, the projection is sometimes called the orthogonal projection, because
you’re taking~𝑏, and 𝜋𝐿(~𝑏) is the approximation to~𝑏 in 𝐿 that differs from~𝑏 by
a perpindicular vector. That is,

(~𝑏 − 𝜋𝐿(~𝑏)) ⋅~𝑎 = 0.

(Why?)
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Let’s try to generalize this. Suppose I have a vector subspace 𝑊 ⊆ R𝑛. We
might like to define the projection of~𝑏 onto𝑊.

How might we do this? Well, suppose we have a orthogonal basis {~𝑢1,… ,~𝑢𝑘}
of𝑊. Then we can write

𝜋𝑊(~𝑏) ≔
𝑘

∑
𝑖=1
𝜋~𝑢𝑖 (

~𝑏).

The difference~𝑏 − 𝜋𝑊(~𝑏) is perpindicular to𝑊; that is, if ~𝑤 ∈𝑊, then

(~𝑏 − 𝜋𝑊(~𝑏)) ⋅ ~𝑤 = 0.
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To explain this, let’s remember a vector is a perpindicular to a subspace if and
only if it’s perpindicular to a basis for that subspace. So all we need to show is
that for any 𝑗,

(~𝑏 − 𝜋𝑊(~𝑏)) ⋅ ~𝑢𝑗 = 0.

But that’s true:

(~𝑏 − 𝜋𝑊(~𝑏)) ⋅ ~𝑢𝑖 = (~𝑏 −
𝑘

∑
𝑖=1
𝜋~𝑢𝑖 (

~𝑏)) ⋅ ~𝑢𝑗

= (~𝑏 − 𝜋~𝑢𝑗 (
~𝑏)) ⋅ ~𝑢𝑗 −∑

𝑖≠𝑗
𝜋~𝑢𝑖 (

~𝑏) ⋅ ~𝑢𝑗 = ~0 −∑
𝑖≠𝑗

~0 = ~0,

because each 𝜋~𝑢𝑖 (
~𝑏) is a scalar multiple of ~𝑢𝑖.
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Here’s an key fact: if you have a different orthogonal basis {~𝑣1,… ,~𝑣𝑘} of𝑊,
then

𝑘

∑
𝑖=1
𝜋~𝑢𝑖 (

~𝑏) =
𝑘

∑
𝑖=1
𝜋~𝑣𝑖 (

~𝑏).
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So if we have a linearly independent set~𝑣1,… ,~𝑣𝑘 ∈ R𝑛 of vectors, let’s think
about how to use these projections to extract what we want. Again, the goal is
to get a new, orthonormal, collection of vectors 𝑢1,… , 𝑢𝑘 ∈ R𝑛 such that for
any 𝑖, we have

im ( 𝑢1 … 𝑢𝑖 ) =𝑊𝑖,

where
𝑊𝑖 ≔ im ( ~𝑣1 … ~𝑣𝑖 ) ,

so that we have this sequence of subspaces

0 =𝑊0 ⊂𝑊1 ⊂ ⋯ ⊂𝑊𝑘 =𝑊.
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So now we can think about the process.

(1) We start with the vector~𝑣1. The only problem there is that it’s not a unit
vector. So we take ~𝑢1 ≔ ~𝑣1, and we normalize it: 𝑢1 ≔

1
‖~𝑢1‖

~𝑢1.

(2) Next, we take the vector~𝑣2, and we remove the best approximation to~𝑣2
that lies in𝑊1:

~𝑢2 ≔ ~𝑣2 − 𝜋𝑊1 (~𝑣2) = ~𝑣2 − 𝜋~𝑢1 (~𝑣2),

and we normalize it: 𝑢2 =
1
‖~𝑢2‖

~𝑢2.
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(3) Now, we take~𝑣3. Here something important happens: we want to write

~𝑢3 ≔ ~𝑣3 − 𝜋𝑊2 (~𝑣3),

but to compute this, we need an orthogonal basis of𝑊2. But good news!
We created it in the last step! So

~𝑢3 ≔ ~𝑣3 − 𝜋𝑊2 (~𝑣3) = ~𝑣3 − 𝜋~𝑢1 (~𝑣3) − 𝜋~𝑢2 (~𝑣3),

and we normalize: 𝑢3 =
1
‖~𝑢3‖

~𝑢3.
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(4) We can keep doing this. We write

~𝑢𝑖 = ~𝑣𝑖 − 𝜋𝑊𝑖−1 (~𝑣𝑖) = ~𝑣𝑖 − 𝜋~𝑢1 (~𝑣𝑖) − ⋯ − 𝜋~𝑢𝑖−1 (~𝑣𝑖),

and we normalize: 𝑢𝑖 =
1
‖~𝑢𝑖‖

~𝑢𝑖.


