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18.06.18: More fun with spacetime

Last time, we introduced the following model for our universe: take R4 (with
standard basis ( ̂𝑒1, ̂𝑒2, ̂𝑒3, ̂𝑒4)). All the geometry comes from the matrix

𝐻 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) ,

and we write 𝜂(~𝑣, ~𝑤) ≔
~
𝑣𝐻~𝑤.
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For any vector ~𝑣 ∈ R4, write 𝑠2(~𝑣) = 𝜂(~𝑣,~𝑣) ∈ R. If 𝑠2(~𝑣) > 0, we say that ~𝑣
is spacelike; if 𝑠2(~𝑣) < 0, we say that~𝑣 is timelike; if 𝑠2(~𝑣) = 0, we say that~𝑣 is
lightlike. This gave us our light cone.
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A 4 × 4matrix𝑀 such that

𝐻 =𝑀𝑇𝐻𝑀.

is called a Lorentz transformation. This is defined precisely so that

𝜂(𝑀~𝑣,𝑀~𝑤) = 𝜂(~𝑣, ~𝑤).

Any physical laws we discover should be invariant under Lorentz transforma-
tions; this includes the relativistic laws ofmechanics,Maxwell’s field equations,
and the Dirac equation.
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Orthogonal matrices arematrices𝑅 such that𝑅𝑇𝑅 = 𝐼. In effect, they preserve
all the geometry given by the dot product.

In 2 dimensions, we can write them all down; they all look like

(
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

) or (
− cos(𝜃) sin(𝜃)
sin(𝜃) cos(𝜃)

)

In 3 dimensions, orthogonal matrices are products of matrices that rotate
about an axis and reflections in planes. (It’s quite tricky to write all of them
down in terms of sines and cosines!)
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Any 3 × 3 orthogonal matrix 𝑅 (i.e., a matrix 𝑅 such that ), the block matrix

(
1 0
0 𝑅
) ,

is a Lorentz transformation.

So if we choose a basis (~𝑥1,~𝑥2,~𝑥3) for R3 such that 𝑥𝑖 ⋅ 𝑥𝑗 = 𝛿𝑖𝑗, then we get a
Lorentz basis ( ̂𝑒1,~𝑥1,~𝑥2,~𝑥3).

Any laws of physics we derive relative to ( ̂𝑒1, ̂𝑒2, ̂𝑒3, ̂𝑒4) will work relative to
( ̂𝑒1,~𝑥1,~𝑥2,~𝑥3).
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There is a different sort of Lorentz basis as well. Consider an observer at the
origin, moving in the positive 𝑥 direction with speed 𝑢 (recall 𝑐 = 1). This
observer will agree with a stationary observer at the origin about the direction
of the 𝑥, 𝑦, and 𝑧 axes, and it will agree with the stationary observer’s mea-
surement of length in the 𝑦 and 𝑧 directions; however, this observer will see
the 𝑥 and 𝑡 directions very differently…
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Write 𝜙 ≔ tanh−1(𝑢). The matrix

𝛬𝜙 = (

cosh(𝜙) sinh(𝜙) 0 0
sinh(𝜙) cosh(𝜙) 0 0
0 0 1 0
0 0 0 1

) =(

1
√1−𝑢2

𝑢
√1−𝑢2
0 0

𝑢
√1−𝑢2

1
√1−𝑢2
0 0

0 0 1 0
0 0 0 1

)

is a Lorentz transformation.This is theLorentz boost in the positive𝑥-direction
at speed 𝑢. Physically, this means that an observer moving in the positive 𝑥
direction with speed 𝑢 will see a vector 𝑣 in spacetime as 𝛬𝜙𝑣.
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This accounts for phenomena such as time dilation and Lorentz contraction.
(How?)
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Lorentz transformations can be divided into four sorts, based on whether
det(𝛬) is +1 or −1, and whether the upper left entry𝛬11 is positive or negative:

det(𝛬) sgn(𝛬11) transformation

+1 + proper, isochronous
-1 + space inverting, isochronous
-1 - space inverting, time reversing
+1 - proper, time reversing

0.1 Proposition. Any proper, isochronous Lorentz transformation is the prod-
uct of a spatial rotation and a boost.


