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Theorem (Rank-Nullity Theorem). If 𝐴 is an𝑚 × 𝑛matrix, then

dim(ker(𝐴)) + dim(im(𝐴)) = 𝑛.
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Suppose 𝐴 were in reduced row echelon form:

(

(

1 −1 0 0 0 4
0 0 1 0 0 7
0 0 0 1 0 6
0 0 0 0 1 7
0 0 0 0 0 0

)

)

,

Then, we have a few columns (1, 3, 4, 5 in this case) that are distinct standard
basis vectors, and the other columns can be written as a linear combination
of these. So the rank here is 4.
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When we have a vector 𝑥⃗with𝐴𝑥⃗ = 0⃗, we can write 𝑥1, 𝑥3, 𝑥4, and 𝑥5 in terms
of the other variables:

(((

(

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

)))

)

= 𝑠
(((

(

1
1
0
0
0
0

)))

)

+ 𝑡
(((

(

−4
0
−7
−6
−7
1

)))

)

.

And as we know, 4 + 2 = 6.
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This pattern works in general. A matrix 𝐴 is in rref iff it looks like this:

( 𝐴⃗1 ⋯ 𝐴⃗𝑘1−1 ̂𝑒1 𝐴⃗1+𝑘1 ⋯ 𝐴⃗𝑘2−1 ̂𝑒2 ⋯ ̂𝑒𝑟 𝐴⃗1+𝑘𝑟 ⋯ 𝐴⃗𝑛 ) .

where the column vectors 𝐴⃗1+𝑘𝑖 ,… , 𝐴⃗𝑘𝑖+1−1 all lie in the span of ̂𝑒1,… , ̂𝑒𝑖, but
not in the span of ̂𝑒1,… , ̂𝑒𝑖−1.

The image is thus the span of the of distinct ̂𝑒𝑖’s that appear:

𝑟 = dim(im(𝐴)).
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When you compute the kernel, on the other hand, you express 𝑥𝑘1 ,𝑥𝑘2 ,… ,𝑥𝑘𝑟
in terms of the other 𝑥𝑖’s. That is, you write any 𝑥⃗ ∈ ker(𝐴) as a linear combi-
nation of vectors

⃗𝑣1,… , ⃗𝑣𝑘1−1, ⃗𝑣1+𝑘1 ,… , ⃗𝑣𝑘2−1,… , ⃗𝑣1+𝑘𝑟 ,… , ⃗𝑣𝑛,

where each ⃗𝑣𝑗 has a 1 in the 𝑗th spot, something in spots 𝑘1, 𝑘2,… , 𝑘𝑟, and a 0
in every other spot.

In particular, these vectors must be linearly independent, so they form a basis
of the kernel! And since there are 𝑛 − 𝑟 of them, we have

dim(ker(𝐴)) = 𝑛 − 𝑟,
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as desired.

This proves the Rank-Nullity Theorem when 𝐴 is in rref!
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But what if 𝐴 isn’t in rref? What then?

Well, we know we can perform row operations to get 𝐴 into rref. (This is the
magic of Gaussian elimination.)

row operations∶𝐴 𝑀𝐴.

There’s an invertible𝑚 ×𝑚matrix𝑀 such that𝑀𝐴 is in rref.

Now we first recall that row operations don’t change the kernel:

ker(𝐴) = ker(𝑀𝐴).
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However, row operations absolutely do change the image:

im(𝐴) ≠ im(𝑀𝐴).
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Well, that’s too bad! So what do we do to get out of trouble? We remember
that the Rank-Nullity theorem only involves the dimension of the image, not
the image itself.

And good news: row operations don’t change the dimension of the image. So
even though

im(𝐴) ≠ im(𝑀𝐴),

we still have
dim(im(𝐴)) = dim(im(𝑀𝐴)).

(Why???)
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Now, victory is ours! For any old 𝑚 × 𝑛matrix 𝐴, we multiply on the left by
an invertible𝑚 ×𝑚matrix𝑀 to get a matrix𝑀𝐴 in rref, and we have

dim(ker(𝐴)) + dim(im(𝐴)) = dim(ker(𝑀𝐴)) + dim(im(𝑀𝐴)) = 𝑛.

{mic drop}
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Let’s take a moment to imagine how our proof might have been different if
we’d used column operations to get our matrix into rcef:

column operations∶𝐴 𝐴𝑁,

where𝑁 is an invertible 𝑛 × 𝑛matrix.
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The point here is that column operations don’t change the image:

im(𝐴) = im(𝐴𝑁).

However, column operations absolutely do change the kernel:

ker(𝐴) ≠ ker(𝐴𝑁).

BUT, column operations don’t change the dimension of the kernel:

dim(ker(𝐴)) = dim(ker(𝐴𝑁)).
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Using pure thought, tell me what the rank and nullity are of these matrices:

(
5 −15
−2 6

)

(
2 4 −138
5 1 75

)

(
2 6 3
5 1 50
0 0 0

)
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(
9 9 9
1 1 1
4 4 4

)

(
1 5 7
−2 6 3
−1 11 10

)
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(

(

1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 2 4 8 16

)

)


