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18.06.12: ‘Kernels and images’

Suppose we can apply some row operations:
(afB)~(c|D).

Here, A and C are m X n matrices, and B and D are m X p matrices. What this
really means is that there’s an invertible 1 x m matrix M such that MA = C
and MB = D. (And it turns out that any M can be built this way!)



So you can use row operations to whittle your favorite matrix down, and then

solve.

First, let’s apply row operations to

3 6 -1 1 -7]0
@ao= 1 -2 2 3 -1]0 |?
2 -4 5 8 —4|0



When we get A into reduced row echelon form (rref, as the cool kids say) we
get

1 =2 0 -1 310
Ccloy=( o o 1 2 =210
0 0 0 0 010

Why is this good? First, we haven't changed the kernel. A vector X € R® is in
ker(A) if and only if X is in ker(C) = ker(MA). (Why?)



Second, we can use the rref above gives us this system of linear equations

X1 2x5 + x4 — 3x5

X3 —2x4 + 2x5

So x; and x; can each be written in terms of x,, x4, X5, and there’s no depen-
dence among x,, x4, X5. So pick variables s, t,u, and let x, = s, x, = t, and

xs =U.



X1

X2
X3
Xy
X5

There’s your basis!

S O O = N

— O N O



Let’s find the kernel via row reduction

2 2 -1 0 1
-1 -1 2 -3 1
1 1 -2 0 -1
o o0 1 1 1

A=



When we get (A]0) into rref, we obtain

11
0 0
0 0
0 0

S o = O

S = O O

O O

S oo o O



Soif x, = sand x5 = ¢, then

There’s your basis!

X1
X2
X3
X4
X5

-1 -1
1 0
=8 0 +t -1
0 0
0 1



18.06.12: ‘Kernels and images’

Column operations work exactly dual to row operations. (Just think of trans-
posing, doing row operations, and transposing back!) So suppose we can apply

some column operations:
A C
B D )

Here, A and C are m x n matrices, and B and D are p x n matrices. What this
really means is that there’s an invertible n x #n matrix N such that AN = C and
BN = D.



18.06.12: ‘Kernels and images’

Why is that a good idea? Well, we're looking for vectors such that A% = 0. So

(+)

if we take

where I is the n x n identity matrix, then we can start using column operations

(5)

to get it to some

So AD = C. So if C has a column of zeroes, then the corresponding column of
D will be a vector in the kernel. Furthermore, if you get C into column echelon
form, then the nonzero column vectors of D lying under the zero columns
of C form a basis of ker(A). (Properly speaking, to prove this, you need the



Rank-Nullity theorem, which we’ll come to soon.)



Let’s do this one:

1 0 30 2 -8

01 50 -1 4
A=

0001 7 -9

00 0O0 O O

A
Let us get the top of <T) into column echelon form.



We obtain

coocole T oo o~
cocoocolYfY—~of —~o

L
coocolm'Y -0 oo
o o ~o|lo oo - o o
o~ o o|lo -~ o o o o
—~ o o ol ©o o o o o

1l

/-~

QA

~——

The last three columns of D are our basis.



18.06.12: ‘Kernels and images’

Dual to finding a basis of the kernel, we can find a basis of the image of a
matrix, im(A). The image of A is the span of the column vectors of A.

If A is an m x n matrix, then A eats a vector of R”, and it poops a vector of R”.
The kernel of A is thus a subspace of R", and the image of A is a subspace of
R™.

The way we compute a basis of the image is not wildly different from the way
in which we compute a basis of the kernel, but the operations are dual, and
that can get confusing. To clear up our confusion, we'll need some theorems!!



Theorem (Rank-Nullity Theorem). If A is an m x n matrix, then

dim(ker(A)) + dim(im(A)) = n.

We are going to spend some quality time with this result.



