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18.06.11: ‘Nullspace’

Take some vectors 7y, ..., Uy € V and make them into the columns of an n x k
matrix

A=(0, 0, - T ).

Multiplication by A is a map T, : R¥ — V that carries é; to ;.

(1) The vectors 0y, ...,0, € V are linearly independent if and only if T, is
1 k y P y A
injective.

(2) The vectors ¥y, ..., 0, span V if and only if T, is surjective.
1 k SP yiuly, )

(3) The vectors 9, ..., U are a basis of V if and only if T, is bijective.



18.06.11: ‘Nullspace’

Let’s see why this works.

First, let’s unpack what the injectivity of T4, would mean. It’s this condition for
any %, j € RF:
if AX = Ay, then X = y.

Defining Z := X — j, we see that we want to show that

-

if AZ=0, then Z = 0.

(In other words, we're saying that the kernel of A consists of just the zero

vector!)



Now AZ is a linear combination of the column vectors @, ..., U with coef-

ficients given by the components of Z. So the injectivity of T, is equivalent to
the following:

That's exactly what it means for 0y, ..., U to be linearly independent.



18.06.11: ‘Nullspace’

Now let’s unpack what the surjectivity of T, would mean. It’s the condition
that for any vector @ € V, there exists a vector ¥ € R¥ such that @ = AX. In
other words, for any vector @ € V, there exist numbers x;, ..., x; such that

k
1D = Z xil-))l'.
i

That’s exactly what it means for ¥}, ..., U to span the subspace V.



So we've proved our result: if

then
(1) 0y,...,0; € V are linearly independent if and only if T is injective.
(2) Uy, ...,0; spanV if and only if T, is surjective.

(3) Uy, ..., 0y are a basis of V if and only if T is bijective.



18.06.11: ‘Nullspace’

Now back to our motivating example: we've been given a system of linear
equations
0 = A%,

where A is an m x n matrix. To solve this equation is to find a basis for the
kernel — Axa nullspace — of A.

In other words, the objective is to find a list of linearly independent solutions
Uy, ..., U such that any other solution can be written as a linear combination
of these! The dimension of ker(A) - sometimes called the nullity of A - is the
number k.



18.06.11: ‘Nullspace’

There are two good ways of extracting a basis of the kernel. There’s a way using
row operations, and a way using column operations. You've been using these
for a while already, but here’s the way I think of these ...

Suppose we can apply some row operations:
(a[B)~(c|D).

Here, A and C are m X n matrices, and B and D are m X p matrices. What this
really means is that there’s an invertible m x m matrix M such that MA = C
and MB = D. (And it turns out that any M can be built this way!)

That’s why it works to solve equations: if in the end C = I, then M = A7l and
D=A"'B.



So you can use row operations to whittle your favorite matrix down, and then

solve. This is nice because it’s so familiar. Let’s do a few examples together as a
team.

First, how about

-3 6 -1 1 -7
A= 1 -2 2 3 -1 ]2
2 -4 5 8 -4



One more:

2 2 -1 0 1
-1 -1 2 -3 1
1 1 -2 0 -1
0O o0 1 1 1



18.06.11: ‘Nullspace’

Column operations work exactly dual to row operations. (Just think of trans-
posing, doing row operations, and transposing back!) So suppose we can apply

(5) (%)

Here, A and C are m x n matrices, and B and D are p x n matrices. What this
really means is that there’s an invertible # x n matrix N such that AN = C and
BN = D. (And it turns out that any N can be built this way!)

some column operations:
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Why is that a good idea? Well, we're looking for vectors such that A% = 0. So

if we take
A
I
where I is the n x n identity matrix, then we can start using column operations

(5)

So AD = C. So if C has a column of zeroes, then the corresponding column of
D will be a vector in the kernel. Furthermore, if you get C into column echelon

to get it to some

form, then the nonzero column vectors of D lying under the zero columns of
C form a basis of ker(A).



Let’s do this one again:

1 1 -2 0 -1



Another:

|
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