18.06 Final Exam

Your PRINTED Name is:

Please CIRCLE your section:

Grading 1:

2:

3:

4:

5:

6:

7:

8:

R01T10 $26-302$ Dmitry VaintrobR02T10 $26-322$ Francesco LinR03T11 $26-302$ Dmitry VaintrobR04T11 $26-322$ Francesco LinR05T11 $26-322$ Francesco LinR05T11 $26-328$ Laszlo LovaszR06T12 $36-144$ Michael AndrewsR07T12 $26-302$ Netanel BlaierR08T12 $26-328$ Laszlo LovaszR09T1pm $26-302$ Sungyoon KimR10T1pm $36-144$ Tanya KhovanovaR11T1pm $26-322$ Jay ShahR12T2pm $36-144$ Tanya KhovanovaR13T2pm $26-322$ Jay ShahR14T3pm $26-322$ Carlos SauerESCCaloxialla Stau				
R03T11 $26-302$ Dmitry VaintrobR04T11 $26-322$ Francesco LinR05T11 $26-328$ Laszlo LovaszR06T12 $36-144$ Michael AndrewsR07T12 $26-302$ Netanel BlaierR08T12 $26-328$ Laszlo LovaszR09T1pm $26-302$ Sungyoon KimR10T1pm $36-144$ Tanya KhovanovaR11T1pm $26-322$ Jay ShahR12T2pm $36-144$ Tanya KhovanovaR13T2pm $26-322$ Jay ShahR14T3pm $26-322$ Carlos Sauer	R01	T10	26 - 302	Dmitry Vaintrob
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R02	T10	26 - 322	Francesco Lin
R05 T11 26-328 Laszlo Lovasz R06 T12 36-144 Michael Andrews R07 T12 26-302 Netanel Blaier R08 T12 26-328 Laszlo Lovasz R09 T1pm 26-302 Sungyoon Kim R10 T1pm 36-144 Tanya Khovanova R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R03	T11	26 - 302	Dmitry Vaintrob
R06 T12 36-144 Michael Andrews R07 T12 26-302 Netanel Blaier R08 T12 26-328 Laszlo Lovasz R09 T1pm 26-302 Sungyoon Kim R10 T1pm 36-144 Tanya Khovanova R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R04	T11	26 - 322	Francesco Lin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R05	T11	26 - 328	Laszlo Lovasz
R08 T12 26-328 Laszlo Lovasz R09 T1pm 26-302 Sungyoon Kim R10 T1pm 36-144 Tanya Khovanova R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R06	T12	36 - 144	Michael Andrews
R09 T1pm 26-302 Sungyoon Kim R10 T1pm 36-144 Tanya Khovanova R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R07	T12	26 - 302	Netanel Blaier
R10 T1pm 36-144 Tanya Khovanova R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R08	T12	26 - 328	Laszlo Lovasz
R11 T1pm 26-322 Jay Shah R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R09	T1pm	26 - 302	Sungyoon Kim
R12 T2pm 36-144 Tanya Khovanova R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R10	T1pm	36 - 144	Tanya Khovanova
R13 T2pm 26-322 Jay Shah R14 T3pm 26-322 Carlos Sauer	R11	T1pm	26 - 322	Jay Shah
R14 T3pm 26-322 Carlos Sauer	R12	T2pm	36 - 144	Tanya Khovanova
	R13	T2pm	26 - 322	Jay Shah
FSC Cabrielle Store	R14	T3pm	26 - 322	Carlos Sauer
ESG Gabrielle Stoy	ESG			Gabrielle Stoy

Thank you for taking 18.06! I hope you have a wonderful summer!

EACH PART OF EACH QUESTION IS 5 POINTS.

1. (a) Find the reduced row echelon form $R = \operatorname{rref}(A)$ for this matrix A:

$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

- (b) Find a basis for the column space C(A).
- (c) Find all solutions (and first tell me the conditions on b_1, b_2, b_3 for solutions to exist!).

$$Ax = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- **2.** (a) What is the 3 by 3 projection matrix P_a onto the line through a = (2, 1, 2)?
 - (b) Suppose P_v is the 3 by 3 projection matrix onto the line through v = (1, 1, 1). Find a basis for the column space of the matrix $A = P_a P_v$ (product of 2 projections)

- **3.** Suppose I give you an orthonormal basis q_1, \ldots, q_4 for \mathbf{R}^4 and an orthonormal basis z_1, \ldots, z_6 for \mathbf{R}^6 . From these you create the 6 by 4 matrix $A = z_1 q_1^T + z_2 q_2^T$.
 - (a) Find a basis for the nullspace of A.
 - (b) Find a particular solution to $Ax = z_1$ and find the complete solution.
 - (c) Find $A^T A$ and find an eigenvector of $A^T A$ with $\lambda = 1$.

- 4. Symmetric positive definite matrices H and orthogonal matrices Q are the most important. Here is a great theorem: Every square invertible matrix A can be factored into A = HQ.
 - (a) Start from $A = U\Sigma V^T$ (the SVD) and choose $Q = UV^T$. Find the other factor H so that $U\Sigma V^T = HQ$. Why is your H symmetric and why is it positive definite?
 - (b) Factor this 2 by 2 matrix into $A = U\Sigma V^T$ and then into A = HQ:

$$A = \begin{bmatrix} 1 & 3\\ -1 & 3 \end{bmatrix} = U\Sigma V^T = HQ$$

- **5.** (a) Are the vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) independent or dependent?
 - (b) Suppose T is a linear transformation with input space = output space = \mathbf{R}^3 . We have a basis u, v, w for \mathbf{R}^3 and we know that T(u) = v + w, T(v) = u + w, T(w) = u + v. Describe the transformation T^2 by finding $T^2(u)$ and $T^2(v)$ and $T^2(w)$.

- **6.** Suppose A is a 3 by 3 matrix with eigenvalues $\lambda = 0, 1, -1$ and corresponding eigenvectors x_1, x_2, x_3 .
 - (a) What is the rank of A? Describe all vectors in its column space C(A).
 - (b) How would you solve du/dt = Au with u(0) = (1, 1, 1)?
 - (c) What are the eigenvalues and determinant of e^A ?

7. (a) Find a 2 by 2 matrix such that

$$A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix} \text{ and also } A\begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}$$

or say why such a matrix can't exist.

(b) The columns of this matrix H are orthogonal but not orthonormal:

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -3 & 1 \end{bmatrix}$$

Find H^{-1} by the following procedure. First multiply H by a diagonal matrix D that makes the columns orthonormal. Then invert. Then account for the diagonal matrix D to find the 16 entries of H^{-1} .

8. (a) Factor this symmetric matrix into $A = U^T U$ where U is upper triangular:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}.$$

- (b) Show by two different tests that A is symmetric positive definite.
- (c) Find and explain an upper bound on the eigenvalues of A. Find and explain a (positive) lower bound on those eigenvalues if you know that

$$A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

Scrap Paper