Exam 3 Solutions

Question 1

- (a) $A = S \operatorname{diag}(1, 0, -1)S^{-1}$. Thus $B = A^9 + I = S(\operatorname{diag}(1, 0, -1)^9 + I)S^{-1} = S \operatorname{diag}(2, 1, 0)S^{-1}$. So B has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 1$ and $\lambda_3 = 0$ and the same eigenvectors as A.
- (b) Write $A = S \operatorname{diag}(1, 0, -1)S^{-1}$ and multiply to give $B = S \operatorname{diag}(2, 1, 0)S^{-1}$.
- (c) (i) B has 0 as an eigenvalue and so cannot be invertible.
 - (ii) *B* has distinct eigenvalues, with eigenvectors which are not orthogonal, and so it cannot be symmetric. (The point about distinct eigenvalues is not needed for full credit.)
 - (iii) True: the trace of B is the sum of the eigenvalues, 2 + 1 + 0 = 3.

Question 2

- (a) $A(1,1,1)^T = 0$ and so $x_1 = (1,1,1)^T$ is an eigenvector with eigenvalue $\lambda_1 = 0$.
- (b) Each of the columns of A + 3I is $(1, 1, 1)^T$ and so it is rank 1. In particular, the null space of A + 3I has dimension 2 and so the other eigenvalues are $\lambda_2 = -3 = \lambda_3$.
- (c) $u(t) = c_1 e^{0t} x_1 + c_2 e^{-3t} x_2 + c_3 e^{-3t} x_3 \longrightarrow u(\infty) = c_1 x_1 \text{ as } t \longrightarrow \infty$. We just need to find c_1 . But $u(0) = c_1 x_1 + c_2 x_2 + c_3 x_3 = (1, 2, 3)^T$. Since x_1 is orthogonal to x_2 and x_3 we see, by dotting with x_1 , that $c_1 x_1 \cdot x_1 = (1, 2, 3)^T \cdot x_1$. Remembering that $x_1 = (1, 1, 1)^T$ we obtain $3c_1 = 6$ so that $c_1 = 2$ and $u(\infty) = (2, 2, 2)^T$.

Question 3

- (a) We can write $C = Q\Lambda Q^T$ for some orthogonal matrix Q and some diagonal matrix Λ . Then $e^C = Qe^{\Lambda}Q^T$, which immediately shows that e^C is symmetric. If $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, then $e^{\Lambda} = \text{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$ so that each eigenvalue of e^C is of the form e^{λ} . In particular, it is positive, so that e^C is positive definite.
- (b) $(Av_i) \cdot (Av_j) = (Av_i)^T (Av_j) = v_i^T (A^T A)v_j = jv_i^T v_j = jv_i \cdot v_j$. Since v_1, v_2 and v_3 are orthogonal, we see that $(Av_i) \cdot (Av_j) = 0$ when $i \neq j$, i.e. Av_1, Av_2 and Av_3 are orthogonal.

(c)
$$V = (v_1|v_2|v_3), \Sigma = \text{diag}(1,\sqrt{2},\sqrt{3}), \text{ and } U = (Av_1|\frac{Av_2}{\sqrt{2}}|\frac{Av_3}{\sqrt{3}}).$$

(d) False. Take
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 and $M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Then $M^{-1}AM = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

In fact, any diagonal A with distinct eigenvalues, together with any M with nonorthogonal columns, will provide a counterexample.

Almost full credit for correctly saying false, e.g. just a rewording that says less about M. An unsymmetric B can be similar to a symmetric (diagonal) Λ as in question 1.