18.06 Exam II

Your PRINTED Name is:

Please CIRCLE your section:

R01	T10	26-302	Dmitry Vaintrob
R02	T10	26 - 322	Francesco Lin
R03	T11	26 - 302	Dmitry Vaintrob
R04	T11	26 - 322	Francesco Lin
R05	T11	26 - 328	Laszlo Lovasz
R06	T12	36 - 144	Michael Andrews
R07	T12	26 - 302	Netanel Blaier
R08	T12	26-328	Laszlo Lovasz
R09	T1pm	26 - 302	Sungyoon Kim
R10	T1pm	36 - 144	Tanya Khovanova
R11	T1pm	26-322	Jay Shah
R12	T2pm	36-144	Tanya Khovanova
R13	T2pm	26-322	Jay Shah
R14	T3pm	26-322	Carlos Sauer
ESC	- - -		Gabrielle Stoy

Grading 1: 2: 3:

- 1. (33 points) Suppose we measure b = 0, 0, 0, 1, 0, 0, 0 at times t = -3, -2, -1, 0, 1, 2, 3.
 - (a) To fit these 7 measurements by a straight line C + Dt, what 7 equations Ax = b would we want to solve?
 - (b) Find the least squares solution $\hat{x} = (\hat{C}, \hat{D})$.
 - (c) The projection of that vector b in \mathbb{R}^7 onto the column space of A is what vector p?

- **2.** (34 points) Suppose $q_1 = (c, d, e)$ and $q_2 = (f, g, h)$ are orthonormal column vectors in \mathbb{R}^3 . They span a subspace S.
 - (a) Find the (1,1) entry in the projection matrix P that projects each vector in \mathbf{R}^3 onto that subspace S.
 - (b) For this projection matrix P, describe 3 independent eigenvectors (vectors for which Px is a number λ times x). What are the 3 eigenvalues of P? What is its determinant?
 - (c) For some vectors v and w in \mathbb{R}^3 the Gram-Schmidt orthonormalization process (applied to v and w) will produce those particular vectors q_1 and q_2 . **Describe** the vectors v and w that lead to this q_1 and q_2 .

3. (34 points)

(a) If q_1, q_2, q_3 are orthonormal vectors in \mathbf{R}^3 , what are the possible determinants of this matrix A with columns $2q_1$ and $3q_2$ and $5q_3$? Why?

$$A = \left[\begin{array}{ccc} 2q_1 & 3q_2 & 5q_3 \end{array}\right]$$

- (b) For a matrix A, suppose the cofactor C_{11} of the first entry a_{11} is **zero**. What information does that give about A^{-1} ? Can this inverse exist?
- (c) Find the 3 eigenvalues of this matrix A and find all of its eigenvectors. Why is the diagonalization $S^{-1}AS = \Lambda$ not possible?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Scrap Paper