18.06 Exam I

Your PRINTED Name is:

Please CIRCLE your section:

R01	T10	26 - 302	Dmitry Vaintrob
R02	T10	26 - 322	Francesco Lin
R03	T11	26 - 302	Dmitry Vaintrob
R04	T11	26 - 322	Francesco Lin
R05	T11	26 - 328	Laszlo Lovasz
R06	T12	36 - 144	Michael Andrews
R07	T12	26 - 302	Netanel Blaier
R08	T12	26 - 328	Laszlo Lovasz
R09	T1pm	26 - 302	Sungyoon Kim
R10	T1pm	36 - 144	Tanya Khovanova
R11	T1pm	26 - 322	Jay Shah
R12	T2pm	36 - 144	Tanya Khovanova
R13	T2pm	26 - 322	Jay Shah
R14	T3pm	26 - 322	Carlos Sauer
ESG			Gabrielle Stoy

Grading 1: 2: 3: 1. (36 points) Start with the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -2 & 4 & 0 \\ 3 & -3 & 7 & 0 \end{bmatrix}$$

- (a) Find a basis for the column space $\mathbf{C}(A)$.
- (b) Find a basis for the null space $\mathbf{N}(A)$.
- (c) Find a basis for the row space $\mathbf{C}(A^T)$.
- (d) Write the complete solution to Ax = b.

$$A = \begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -2 & 4 & 0 \\ 3 & -3 & 7 & 0 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

- **2.** (32 points)
 - (a) Suppose the matrices A and B have the same column space. Give an example where A and B have different nullspaces — or say why this is impossible.
 - (b) Again A and B have the same column space. Give an example where A and B have different ranks r or say why this is impossible.
 - (c) CIRCLE TRUE or FALSE: If B is a square matrix then $\mathbf{C}(B) = \mathbf{C}(B^T)$.
 - (d) If the columns of a 5 by 3 matrix M are linearly independent and x in \mathbf{R}^3 is not the zero vector, then you know that Mx is ______. I am looking for an answer that uses independence of columns and $x \neq 0$.

3. (32 points)

- (a) Find a 3 by 3 matrix A whose column space is the plane x+y+z=0in \mathbb{R}^3 . (This means: $\mathbb{C}(A)$ consists of all column vectors (x, y, z) with x+y+z=0.)
- (b) How do you know that a 3 by 3 matrix A with that column space is not invertible?
- (c) Does there exist a matrix B whose column space is spanned by (1,2,3) and (1,0,1) and whose nullspace is spanned by (1,2,3,6)? If so, construct B. If not, explain why not.
- (d) Is this set of matrices a vector space or not? All 3 by 3 matrices with the column vector (1, 1, 1) in their column space. YES or NO with a reason.

Scrap Paper