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Problem 1 (§5.2, 4). Identify all the nonzero terms in the big formula for the determinants
of the following matrices:

A =


1 0 0 1
0 1 1 1
1 1 0 1
1 0 0 1

 , B =


1 0 0 2
0 3 4 5
5 4 0 3
2 0 0 1

 .

For A, we must choose the 1 in the the entry (2, 3), since it’s the only nonzero thing in
the third column. This rules out all the other entries of the second row, and in the second
column, we are again left with only a single choice, the 1 in entry (3, 2). There are then two
ways to choose entries in the other two columns.

1 0 0 1

0 1 1 1

1 1 0 1

1 0 0 1

 ,


1 0 0 1

0 1 1 1

1 1 0 1

1 0 0 1


The determinant of A is now

detA = (1)(1)(1)(1) det


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

+ (1)(1)(1)(1) det


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


= −1 + 1 = 0

Of course, the determinant has to be 0 – the first and last rows are the same.

For B, there are the same choices of nonzero entries:
1 0 0 2

0 3 4 5

5 4 0 3

2 0 0 1

 ,


1 0 0 2

0 3 4 5

5 4 0 3

2 0 0 1

 .

The determinant is

detB = (1)(4)(4)(1) det


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

+ (2)(4)(4)(2) det


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


= −16 + 64 = 48.



Problem 2 (§5.2, 9). Show that 4 is the largest determinant for a 3× 3 matrix of 1s and
−1s.

There are a couple ways to do this. Here’s a tricky one. Suppose the matrix is

A =

a b c
d e f
g h i


By the big formula,

detA = aei+ bfg + cdh− ahf − dbi− gec.

Since each of the entries is either +1 or −1, each of the terms here is either +1 or −1. That
means that the sum of all of them is one of −6,−4,−2, 0, 2, 4, 6. To show that the maximum
sum is 4, we just need to rule out its being 6.

The only way we could get 6 is if aei = bfg = cdh = 1 and ahf = dbi = gec = −1.
Multiplying the first three together, this would say abcdefghi = 1 (that is to say, the
number of −1s is even). Multiplying the last three together, we get abcdefghi = −1 (the
number of −1s is odd). This is impossible! So there’s no way to get 6.

Here’s a slightly more systematic approach. We can expand by cofactors across the top row:

detA = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
Each of the 2× 2 determinants here is −2, 0, or 2. If we can prove that at least one of them
is 0, it follows that the total is at most 4.

Let’s say a column is a “=-column” if the two bottom entries are the same, and a “ 6=-
column” if they are different (i.e. one entry is +1 and one is −1). We have three columns,
so there must be either two =-columns or two 6=-columns. If there are two =-columns, the
cofactor corresponding to these two columns is 0. If there are two 6=-columns, the cofactor
corresponding to these two columns is 0. So at least one of the cofactors has to be 0, and
this means the maximum determinant is 4.

You might notice that these arguments won’t extend very well if we try to answer the same
questions for n× n matrices, instead of just 3× 3. In fact, the answer isn’t known – this is
an old problem, called Hadamard’s maximal determinant problem! You can Wiki it if you’re
curious. The maximum possible determinant is known for n ≤ 21 but not past that.

Problem 3 (§5.2, 12). Take

A =

 2 −1 0
−1 2 −1
0 −1 2


The cofactor matrix is

C =

3 2 1
2 4 2
1 2 3

 .



Then we compute ACT =

4 0 0
0 4 0
0 0 4

. Notice that since detA = 4, A−1 = CT/ detA as

expected.

Problem 4 (§5.2, 15). We consider the tridiagonal matrices

E1 =
∣∣1∣∣ , E2 =

∣∣∣∣1 1
1 1

∣∣∣∣ , E3 =

∣∣∣∣∣∣
1 1 0
1 1 1
0 1 1

∣∣∣∣∣∣ , E4 =

∣∣∣∣∣∣∣∣
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

∣∣∣∣∣∣∣∣
a) To compute En, we expand by minors across the first row. There are two terms.

En =

∣∣∣∣∣∣∣∣∣∣
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

∣∣∣∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣∣∣∣∣∣
× × × × ×
× 1 1 0 0
× 1 1 1 0
× 0 1 1 1
× 0 0 1 1

∣∣∣∣∣∣∣∣∣∣
− 1 ·

∣∣∣∣∣∣∣∣∣∣
× × × × ×
1 × 1 0 0
0 × 1 1 0
0 × 1 1 1
0 × 0 1 1

∣∣∣∣∣∣∣∣∣∣
= En−1 −

∣∣∣∣∣∣∣∣
1 1 0 0
0 1 1 0
0 1 1 1
0 0 1 1

∣∣∣∣∣∣∣∣
The first matrix in the cofactor expansion is just En−1, but the second is slightly different:
it’s missing a 1 in the (2, 1)-entry. To compute its determinant, we do a cofactor expansion
down the first column. This has only a single term, which is En−2:∣∣∣∣∣∣∣∣

1 1 0 0
0 1 1 0
0 1 1 1
0 0 1 1

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣
1 1 0
1 1 1
0 1 1

∣∣∣∣∣∣ = 1 · En−2

Putting this back in to our original expansion, we get En = En−1 − En−2.

b) Since clearly E1 = 1 and E2 = 0, we use the above formula and obtain E3 = −1, E4 = −1,
E5 = 0, E6 = 1, E7 = 1, E8 = 0.

c) These things are repeating 1, 0,−1,−1, 0, 1 with a period of 6. This implies that E100 =
E4 = −1, since 100 is 4 more than a multiple of 6.

Problem 5 (§5.2, 23). a) We have a 4× 4 block matrix

M =

(
A B
0 D

)
.

Why is detM = detA · detD?

There are four ways to pick nonzero entries in the big formula:




a11 a12 b11 b12
a21 a22 b21 b22

0 0 d11 d12

0 0 d21 d22

 ,


a11 a12 b11 b12
a21 a22 b21 b22

0 0 d11 d12

0 0 d21 d22




a11 a12 b11 b12
a21 a22 b21 b22

0 0 d11 d12

0 0 d21 d22

 ,


a11 a12 b11 b12
a21 a22 b21 b22

0 0 d11 d12

0 0 d21 d22


The determinant is now

detM = a11a22d11d22 − a11a22d12d21 − a12a21d11d22 + a12a21d12d21

= (a11a22 − a12a21)(d11d22 − d12d21)
= detA · detD,

as claimed.

The only way to come up with a nonzero thing in each row in each column is to do this for
A and D separately, then combine them; the same trick works for block upper triangular
matrices of other sizes too.

b) Show that this doesn’t work anymore if C 6= 0:

M =

(
A B
C D

)
.

It might not be true that detM = detA detD − detB detC.

Here’s an example:

M =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Here M has detM = −1 (it’s a permutation matrix), but each of the submatrices has
determinant 0.

c) The same example shows that detM = det(AD − CB) doesn’t work either. We have
AD = 0 and BC = ( 1 0

0 0 ), so det(AD −BC) = det ( −1 0
0 0 ) = 0.

Problem 6 (§5.2, 34). Let

A =


x x x x x
x x x x x
0 0 0 x x
0 0 0 x x
0 0 0 x x





a) The last three rows have a span that is at most 2-dimensional; it follows that there is
some linear dependence among them.

b) Every term in the big formula is 0. The reason is that in picking entries in rows 3, 4, and
5, at least one of them must be in a column other than 4 or 5, since we’re only allowed to
pick one entry per column. That means it must have a 0, and so the corresponding term in
the big formula is 0.

Problem 7 (§5.3, 1). a) We use Cramer’s rule to solve Ax = b, where

A =

(
2 5
1 4

)
, b =

(
1
2

)
.

B1 =

(
1 5
2 4

)
, detB1 = −6, B2 =

(
2 1
1 2

)
, detB2 = 3.

Then

x1 =
detB1

detA
=
−6

3
= −2,

x2 =
detB2

detA
=

3

3
= 1.

b) Now for a 3× 3 Ax = b, where

A =

2 1 0
1 2 1
0 1 2

 , b =
(
1 0 0

)
.

B1 =

1 1 0
0 2 1
0 1 2

 , detB1 = 3, B2 =

2 1 0
1 0 1
0 0 2

 , detB2 = −2,

B3 =

2 1 1
1 2 0
0 1 0

 , detB3 = 1.

Then

x1 =
detB1

detA
=

3

4
,

x2 =
detB2

detA
=
−2

4
= −1

2
,

x3 =
detB3

detA
=

1

4
.

Problem 8 (§5.3, 12). If all entries of A and A−1 are integers, prove that detA = 1 or
−1.



If A has all entries integers, then detA is an integer: this is implied by the big formula,
which says that the determinant is a sum of a bunch of terms, every single one of which is
an integer. Now detA−1 = 1/ detA. But if A−1 has all entries integers, then detA−1 is an
integer too. This means that detA is an integer whose reciprocal is also an integer, and the
only possibilities are 1 and −1.

Problem 9 (§5.3, 20). Compute the determinant of

H =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .

As pointed out in the question, this matrix has orthogonal rows. That means that HTH is
diagonal, and computing its determinant is easy. In fact,

HTH =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4


This has determinant 4 · 4 · 4 · 4 = 256. But det(HTH) = det(HT ) det(H) = det(H)2, so
detH = 16.

Problem 10 (§5.3, 36). If (x, y, z), (1, 1, 0), and (1, 2, 1) all lie on a plane through the
origin, then

det

x 1 1
y 1 2
z 0 1

 = 0.

Expanding the determinant, this means x− y + z = 0, so that’s the equation for the plane
in question.

Problem 11 (§6.1, 9). Suppose that Ax = λx, i.e. x is an eigenvector of A, with eigen-
value λ.

a) We have (A2)x = A(Ax) = A(λx) = λ(Ax) = λ2x. This means that x is also an
eigenvector of A2, and the corresponding eigenvalue is λ2.

b) Starting with Ax = λx, we multiply by A−1 on the left of both sides, obtaining x =
λA−1x. This implies that A−1x = λ−1x, i.e. that x is also an eigenvector of A−1, with
eigenvalue λ−1.

c) Note that (A+ I)x = Ax+ Ix = λx+x = (λ+1)x, which means that x is an eigenvector
of A+ I, with eigenvalue λ+ 1.

Problem 12 (§6.1, 17). Suppose

A =

(
a b
c d

)
.



Then
det(A− λI) = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc).

Notice that the coefficient a+ d is the trace, while the coefficient ad− bc is the determinant.
The quadratic formula tells us the eigenvalues:

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
=

(a+ d)±
√

(a− d)2 + bc

2

The sum of the two possibilities is a+ d, while their product is ad− bc.
If λ1 = 3 and λ2 = 4, then the characteristic polynomial must be (λ−3)(λ−4) = λ2−7λ+12.

Problem 13 (§6.1, 19). Suppose that B is a 3× 3 matrix with eigenvalues 0, 1, 2.

a) It follows that the rank of B is 2. Let v1, v2, and v3 be the eigenvectors. These are
eigenvectors for different eigenvalues, so they are linearly independent and therefore a basis
for R3.

If v = c1v1 + c2v2 + c3v3 is any vector in the space, then Bv = c1(0v1) + c2(1v2) + c3(2v3) =
c2v2 + 2c3v3. If c2 or c3 is nonzero, then Bv is nonzero, since v2 and v3 are linearly
independent. So the nullspace of B is exactly the multiples of v1, a one-dimensional space.
It follows that the rank is 2.

b) We have
det(BTB) = det(BT ) det(B) = det(BT ) · (0)(1)(2) = 0,

since the product of the eigenvalues is the determinant.

c) We don’t have enough information to figure out the eigenvalues of BTB – knowing the
eigenvalues of two matrices isn’t enough to know the eigenvalues of the product.

d) To find the eigenvalues of (B2 + I)−1, we unwind things in three steps, using the rules for
how changing a matrix changes the eigenvalues.

Matrix Eigenvalues
B 0, 1, 2
B2 0, 1, 4

B2 + I 1, 2, 5
(B2 + I)−1 1, 1/2, 1/5

Problem 14 (§6.1, 30). Suppose that

A =

(
a b
c d

)
,

with a+ b = c+ d.

First we check that (1, 1) is an eigenvector.

A

(
1
1

)
=

(
a b
c d

)(
1
1

)
=

(
a+ b
c+ d

)
=

(
a+ b
a+ b

)
= (a+ b)

(
1
1

)
.

This means that (1, 1) is an eigenvector, with eigenvalue a+ b (= c+ d).

The sum of the two eigenvalues is equal to the trace, which is a+d. So the second eigenvalue
must be (a+ d)− (a+ b) = d− b.



Problem 15. We want to maximize the determinant of the symmetric matrix

S =

4 2 x
2 4 2
x 2 4



a) By the big formula,

detS = 64 + 4x+ 4x− 16− 16− 4x2 = −4x2 + 8x+ 32

= −4(x2 − 2x− 8) = −4((x− 1)2 − 9).

This is maximized when x = 1.

b) To find the inverse, we can compute the cofactor matrix.

C =

12 −6 0
−6 15 −6
0 −6 12

 .

Then

S−1 =
1

detS
CT =

1

36

12 −6 0
−6 15 −6
0 −6 12

 =
1

12

 4 −2 0
−2 5 −2
0 −2 4


c) The (1, 3)-entry of the inverse was determined by the (3, 1)-entry of the cofactor matrix,
which is the determinant of the submatrix obtained by deleting the third row and the first
column, i.e. ( 2 1

4 2 ).

d) Here’s another way to get the same answer. From the Lewis Carroll identity on the last
problem set, we know that

4 detS = (detA)(detD)− (detB)(detC),

where A, B, C, and D are the 3 × 3 submatrices corresponding to the top left, top right,
bottom left, and bottom right respectively. Observe that C = BT , so detB = detC and
thus

4 detS = (detA)(detD)− (detB)2.

Since (detB)2 ≥ 0, and since detA and detD don’t depend on x, the largest this can possibly
be is when detB = 0. But detB = det ( 2 x

4 2 ) = 4− 4x, which is 0 exactly when x = 1. This
agrees with our answer to part a) of this problem.


