
18.06 Spring 2013 � Problem Set 9 Solutions

1. 6.6 #4: Since A has two distinct eigenvalues, it must have 2 linearly independent

eigenvectors. Since A is 2 by 2, this means that A is diagonalizable: A = SΛS−1

where Λ =

[
1 0
0 0

]
. It follows that if B is 2 by 2 and has the same eigenvalues,

then B = TΛT−1 where T is the matrix of eigenvectors for B, and hence B =
TS−1A(TS−1)−1 is similar to A.

2. 6.6 #6: Two 2 x 2 matrices with distinct eigenvalues are similar if and only if they

have the same eigenvalues. This gives the following families:

1, 0 :

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 1

]
,

[
1 0
1 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
1,−1 :

[
0 1
1 0

]
2, 0 :

[
1 1
1 1

]
1±
√

5

2
:

[
1 1
1 0

]
,

[
0 1
1 1

]
This leaves 6 matrices with a repeated eigenvalue. The zero matrix and the identity

matrix are each in their own family. The remaining matrices have a repeated eigen-

value but only one eigenvector (up to scaling). Using the Jordan form, we see these

are in the same family if and only if they have the same (repeated) eigenvalue:

1, 1 :

[
1 0
1 1

]
,

[
1 1
0 1

]
0, 0 :

[
0 0
1 0

]
,

[
0 1
0 0

]
3. 6.6 #17:

(a) False:

[
0 1
0 1

]
is similar to

[
1 0
0 0

]
(see previous question).

(b) True: If B is singular it has 0 as an eigenvalue, and so if A is similar to B it

must also have 0 as an eigenvalue and hence cannot be invertible.

(c) False: A =

[
0 1
0 0

]
is similar to −A =

[
0 −1
0 0

]
, since they both have a repeated

eigenvalue of 0 with only one eigenvector, and therefore have the same Jordan

form.

(d) True: The eigenvalues of A+ I are equal to λi + 1 where λi are the eigenvalues
of A. So A+ I cannot have the same eigenvalues as A and hence is not similar

to A.

4. 6.6 #18: AB = B−1(BA)B so AB is similar to BA.
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5. 6.6 #20:

(a) If B = M−1AM then B2 = M−1AMM−1AM = M−1A2M so A2 and B2 are

similar.

(b) A =

[
0 1
0 0

]
, B =

[
0 0
0 0

]
. Clearly A and B are not similar, but A2 = B2.

(c) Both have the same distinct eigenvalues: 3 and 4.

(d) Both have the same repeated eigenvalue of 3. However the �rst matrix has two

linearly independent eigenvectors while the second does not, hence they are not

similar.

(e) M =

[
0 1
1 0

]
.

6. 6.7 #3: If A is rank 1, then so is ATA and so its only non-zero eigenvalue is σ21. The
trace of ATA is the sum of all of its eigenvalues, hence is equal to σ21. Since the trace
of ATA is the sum of a2ij , it follows that σ

2
1 is the sum of all a2ij .

7. 6.7 #6:

ATA =

1 1 0
1 2 1
0 1 1


has eigenvalues 3, 1, 0 and unit eigenvectors (1, 2, 1)/a, (1, 0,−1)/b and (1,−1, 1)/c
where a =

√
6, b =

√
2 and c =

√
3.

AAT =

[
2 1
1 2

]
has eigenvalues 3, 1 and eigenvectors (1, 1)/d and (1,−1)/e where d =

√
2, e =

√
2.

The SVD decomposition for A is then:

A =

[
1√
2

1√
2

1√
2
− 1√

2

][√
3 0 0

0 1 0

]
1√
6

1√
2

1√
3

2√
6

0 −1√
3

1√
6
−1√
2

1√
3


8. 6.7 #7: The best rank one approximation to A is UΣ′V T where Σ′ is obtained from

Σ by keeping the largest singular value and replacing the rest by zeroes. Another way

of writing this is σ1u1v
T
1 . Here this is given by:[

1
2 1 1

2
1
2 1 1

2

]
9. 6.7 #14: We are looking for the closest rank one approximation to A. As above,

this obtained by setting σ2 = 0 in the singular value decomposition (i.e. is given by

σ1u1v
T
1 ).
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10. Σ and Λ agree if and only if A is a positive semi-de�nite matrix, i.e. A is symmetric

and has non-negative eigenvalues. One direction is clear: if A is positive semide�nite

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 then ATA = A2 has eigenvalues λ21 ≥ λ22 ≥
· · · ≥ λ2n, and hence the singular values are equal to the eigenvalues λ1, . . . , λn.

The other direction is more di�cult. Suppose A has singular value decomposition

A = σ1u1v
T
1 + · · · + σrurv

T
r , and suppose that the eigenvalues of A are equal to

the singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We will show that A is symmetric

(hence positive semi-de�nite since the eigenvalues are non-negative) by induction on

the rank r. The case r = 0 is trivial since then A = AT = 0. So suppose r ≥ 1. For
simplicity assume σ1 is strictly greater than σ2. Let x be a unit-length eigenvector

for A corresponding to the eigenvalue σ1, we claim that x = ±v1. To prove this

write x in terms of the v's: x1 = α1v1 + α2v2 + · · · + vnαn. Since x
Tx = 1 we have

α2
1 + · · ·+ α2

n = 1. We then have

σ21 = σ21x
Tx = (Ax)TAx = xT (ATAx) =

n∑
i=1

αiv
T
i

( n∑
j=1

αjσ
2
j vj

)
=

n∑
i=1

α2
i σ

2
i .

Now if x 6= ±v1 we must have αi 6= 0 for some i > 0, and since σ2i < σ21 for i 6= 0 we

have

σ21 =
n∑

i=1

α2
i σ

2
i <

n∑
i=1

α2
i σ

2
1 = σ21

n∑
i=1

α2
i = σ21,

which is a contradiction. So we must have x = ±v1. Since u1 = Av1/σ1 it follows

that u1 = v1 so A = σ1v1v
T
1 +σ2u2v

T
2 + · · ·+σrurv

T
r . Now B = A−σ1v1vT1 will have

eigenvalues and singular values equal to σ2, · · · , σr, 0. Since the rank of B is r−1, by
induction it must be symmetric and therefore A = B + σ1v1v

T
1 is symmetric as well.
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