
18.06 Spring 2013 � Problem Set 4 Solutions

1. 8.2 #8:













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1













2. 8.2 #9: Row redu
e the augmented matrix:













−1 1 0 0 | b1
−1 0 1 0 | b2
0 −1 1 0 | b3
0 −1 0 1 | b4
0 0 −1 1 | b5













→













−1 1 0 0 | b1
0 −1 1 0 | b2 − b1
0 0 0 0 | b3 − b2 + b1
0 0 −1 1 | b4 − b2 + b1
0 0 0 0 | b5 − b4 + b2 − b1













So the requirements are b3 − b2 + b1 = 0 and b5 − b4 + b2 − b1 = 0. This is Kir
ho�'s
voltage law around the two loops in the graph. (Note that the requirement for the

third loop, b3 − b5 + b4 = 0, follows from the other two. Based on the graph, 
an you

guess why this should be the 
ase?)

3. 8.2 #11: We have

ATA =









2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2









(a) The diagonal of ATA tells how many edges into ea
h node.

(b) The o�-diagonals −1 or 0 tell whi
h pairs of nodes are adja
ent.

4. 4.1 #3:

(a)





1 2 −3
2 −3 1
−3 5 −2





(b) This is impossible, sin
e the null spa
e must be orthogonal to the row spa
e but

we have

[

2 −3 5
] [

1 1 1
]

= 4 6= 0.

(
) This is impossible. Sin
e Ax = (1, 1, 1)T has a solution, (1, 1, 1)T must be in the


olumn spa
e C(A). But C(A) must be orthogonal to N(AT ), and we have

[

1 0 0
]





1
1
1



 = 1 6= 0.
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(d)

[

1 1
−1 −1

]

(e) This is impossible, as the ve
tor (1, 1, . . . , 1)T would then be in both the row

spa
e and the null spa
e whi
h are orthogonal to ea
h other.

4.1 #9: If ATAx = 0 then Ax = 0. Reason: Ax is in the nullspa
e of AT
and also in

the 
olumn spa
e of A and those spa
es are orthogonal.

5. 4.1 #10:

(a) Sin
e A is symmetri
, the 
olumn spa
e is equal to the row spa
e and is therefore

orthgonal to the nullspa
e.

(b) x is in the nullspa
e and z is in the 
olumn spa
e, hen
e xT z = 0.

4.1 #11: For A: The nullspa
e is spanned by (−2, 1), the row spa
e is spanned by

(1, 2). The 
olumn spa
e is the line through (1, 3) and N(AT ) is the perpendi
ular

line through (3,−1). For B: The nullspa
e of B is spanned by (0, 1), the row spa
e

is spanned by (1, 0). The 
olumn spa
e and left nullspa
e are the same as for A.

6. 4.1 #30: Sin
eN(A) 
ontains C(B), we have dim(N(A)) ≥ dimC(B). But dim(N(A)) =
4 − rank(A) and dim(C(B)) = rank(B). So we have 4 − rank(A) ≥ rank(B), or
rank(A) + rank(B) ≤ 4.

7. 4.2 #3:

(a) We have

P =
1

3





1 1 1
1 1 1
1 1 1



 , P b =
1

3





5
5
5



 .

One 
an 
he
k that P 2 = P .

(b) We have

P =
1

11





1 3 1
3 9 3
1 3 1



 , P b =





1
3
1



 .

One 
an 
he
k that P 2 = P .

8. 4.2 #11:

(a) We have

ATA =

[

1 2
1 1

]

, AT b =

[

5
2

]

.

We then solve ATAx = (5, 2)T to �nd x = (−1, 3)T . We then have p = Ax =
(2, 3, 0)T . We also have e = b− p = (0, 0, 4)T , whi
h is indeed orthogonal to the


olumns of A.
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(b) We have

ATA =

[

2 3
2 2

]

, AT b =

[

14
8

]

.

We then solve ATAx = (14, 8)T to �nd x = (−2, 6)T . We then have p = Ax =
(4, 4, 6)T . We also have e = b− p = 0, whi
h is orthogonal to the 
olumns of A.

In fa
t we have shown that b is in the 
olumns spa
e of A, sin
e p = b.

(
) 4.2 #31: First we need to 
he
k that p is 
ontained in the subspa
e spanned

by the a's. We 
an do this by using row redu
tion to determine if the system

Ax = p has a solution, where A is the m × n matrix with 
olumns a1, . . . , an.

If p is indeed in this subspa
e, we then 
ompute e = b − p and 
he
k that e is

orthogonal to the ve
tors a1, . . . , an, i.e. a
T

i
e = 0 for i = 1, . . . , n.
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%%%%%%%%%%%%%%%
% Problem10.m %
%%%%%%%%%%%%%%%
clear,clc
M = CompleteGraph(5) 
A =  edgelist2incidence(M)
ColSpaceBasis = getcolspacebasis(A)
RowSpaceBasis = getcolspacebasis(A')
L = A'*A
N = null(L); N = N./min(N); NullSpace = rat(N)

B = ColSpaceBasis;
b = 1:10; b = b'

disp('use backslash')
x = B\b

disp('use pseudo inverse')
x = pinv(B)*b

disp('use least squares')
x = lsqlin(B,b)
x = (B'*B) \ (B'*b)

% projection onto column space
p = B*x

%% OR form Areduced and solve these equations 
% remove last column (check the remaining columns still form a basis, e.g. with rref) 
% in fact, Ar = B above, so we are repeating the same calculation here
Ar = A(:,1:end-1); 
Lr = Ar'*Ar
xr = Lr \ (Ar'*b)
p = Ar*xr

%%%%%%%%%%%%%%%%%%%%
% CompleteGraph.m  %
%%%%%%%%%%%%%%%%%%%%

function  M = CompleteGraph(N) 
% generate edge list for complete graph on N nodes
e = 0;
for i = 1:N
    for j = i+1:N
        e = e + 1;
        M(e,1) = i;
        M(e,2) = j;
    end
end

%%%%%%%%%%%%%%%%%%%%%%%%
% edgelist2incidence.m %
%%%%%%%%%%%%%%%%%%%%%%%%

function A = edgelist2incidence(M)
% M is m x 2 matrix
% if edge e connects node i to node j then
% row e = [i   j]
% Two conventions:
% 1. columns are increasing
% 2. i < j

m = size(M,1);
n = max(max(M));
A = zeros(m,n);
for e = 1:m
    i = M(e,1); j = M(e,2);
    A(e, i) = -1 ; A(e, j) = +1;     
end



%%%%%%%%%%%%%%%%%%%%%%
% getcolspacebasis.m %
%%%%%%%%%%%%%%%%%%%%%%

function B = getcolspacebasis(A)
[E jb] = rref(A);
B = A(:,jb);


