18.06 Spring 2013 — Problem Set 4 Solutions

1. 8.2 #8:
-1 1 0 0
-1 0 1 0
0 -1 1 0
0 -1 0 1
0 0 -11
2. 8.2 #9: Row reduce the augmented matrix:
-1 1 0 0 | i -1 1 0 0 | b1
-1 0 1 0 | b 0o -1 1 0 | by — by
0O -1 1 0 ’ bs| — | 0 0 0 0 ’ bz — by + b1
0 -1 0 1 | by 0 0 -1 1 | by — by + b1
0 0 -1 1 | b 0 0 0 0 | bs—bs+ba—t

So the requirements are b3 — by + by = 0 and bs — by + by — by = 0. This is Kirchoff’s
voltage law around the two loops in the graph. (Note that the requirement for the
third loop, bs — bs + by = 0, follows from the other two. Based on the graph, can you
guess why this should be the case?)

3. 8.2 #11: We have

2 -1 -1 0
-1 3 -1 -1
-1 -1 3 -1
0O -1 -1 2

AT A =

(a) The diagonal of AT A tells how many edges into each node.
(b) The off-diagonals —1 or 0 tell which pairs of nodes are adjacent.

4. 4.1 #3;
(a)
1 2 -3
2 -3 1
3 5 -2

(b) This is impossible, since the null space must be orthogonal to the row space but
we have

2 =3 5][1 1 1]=4%#0.

(c) This is impossible. Since Az = (1,1,1)7 has a solution, (1,1,1)” must be in the
column space C'(A). But C(A) must be orthogonal to N(AT), and we have

1
1 0 0] |[1] =1#0.
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(d)
5

(e) This is impossible, as the vector (1,1,...,1)7 would then be in both the row
space and the null space which are orthogonal to each other.

4.1 #9: If AT Az = 0 then Az = 0. Reason: Az is in the nullspace of AT and also in
the column space of A and those spaces are orthogonal.

5. 4.1 #10:

(a) Since A is symmetric, the column space is equal to the row space and is therefore
orthgonal to the nullspace.

(b) x is in the nullspace and z is in the column space, hence 27z = 0.

4.1 #11: For A: The nullspace is spanned by (—2,1), the row space is spanned by
(1,2). The column space is the line through (1,3) and N(AT) is the perpendicular
line through (3, —1). For B: The nullspace of B is spanned by (0, 1), the row space
is spanned by (1,0). The column space and left nullspace are the same as for A.

6. 4.1 #30: Since N(A) contains C(B), we have dim(N(A)) > dim C(B). But dim(N(A)) =
4 — rank(A) and dim(C(B)) = rank(B). So we have 4 — rank(A) > rank(B), or
rank(A) + rank(B) < 4.

7. 4.2 #3:

(a) We have
1 11 5
P = % 11 1§, Pb= % 5
1 11 5

One can check that P2 = P.

(b) We have
1 1 31 1
P = I 3 9 3|, Pb= |3
1 31 1

One can check that P%2 = P.
8. 4.2 #11:

(a) We have

T, |1 2 T, |5
AA_[1 L aT= o)
We then solve AT Az = (5,2)7 to find 2 = (—1,3)7. We then have p = Az =
(2,3,0)7. We also have e = b —p = (0,0,4)”, which is indeed orthogonal to the
columns of A.



(b)

We have

2 3 14
T Ty _

PO R R )
We then solve AT Az = (14,8)T to find x = (—2,6)7. We then have p = Az =
(4,4,6)T. We also have e = b — p = 0, which is orthogonal to the columns of A.
In fact we have shown that b is in the columns space of A, since p = b.

4.2 #31: First we need to check that p is contained in the subspace spanned
by the a’s. We can do this by using row reduction to determine if the system

Az = p has a solution, where A is the m x n matrix with columns ay,...,a,.
If p is indeed in this subspace, we then compute e = b — p and check that e is
orthogonal to the vectors ay,...,a,, i.e. a%pe =0forie=1,...,n.



700000000000000
'o/0/0/0/0/0/0/0/0/0/0/0/0/0/0

% Problem10.m %

0/ 0/ 0/ 0/ 0/ 0/ O/ O/ O/ O/ O/ O/ O/ O/ O
‘0o/0/0/0/0/0/0/0/0/0/0/0/0/0/0

clear,clc

M = CompleteGraph(5)

A = edgelist2incidence(M)
ColSpaceBasis = getcolspacebasis(A)

RowSpaceBasis = getcolspacebasis(A')

L = A'"*A

N = null(L); N = N./min(N); NullSpace = rat(N)
B = ColSpaceBasis;

b=1:10; b = b’

disp('use backslash')
X = B\b

disp('use pseudo inverse')
x = pinv(B)*b

disp('use least squares')
x = 1lsqlin(B,b)
x = (B'*B) \ (B'*b)

% projection onto column space
p = B*x

%% OR form Areduced and solve these equations
% remove last column (check the remaining columns still form a basis, e.g. with rref)
% in fact, Ar = B above, so we are repeating the same calculation here

Ar = A(:,1:end-1);
Lr = Ar'*Ar

xr = Lr \ (Ar'*b)
p = Ar*xr

70000000000000000000
'0o/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

% CompleteGraph.m %

0/.0/0/ 0/ 0/ 0/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O
'o/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

function M = CompleteGraph(N)
% generate edge list for complete graph on N nodes
e =0;
for i = 1:N
for j =
e=

end
end

0/ 0/0/ 0/ 0/ 0/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O,
‘0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

% edgelist2incidence.m %

O/OOOOOOOOOOOOOOOOOOOOOOO
0o/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

function A = edgelist2incidence(M)

% M is m x 2 matrix

% if edge e connects node i to node j then
% row e = [i i1

% Two conventions:

% 1. columns are increasing

% 2. 1< j

m
n
A

size(M,1);

max(max(M));

zeros(m,n);

e =1:m

i=Me,1); j = Me,2);

A(e, 1) = -1 ; A(e, j) = +1;
end
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0/.0/0/ 0/ 0/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O/ O,
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

% getcolspacebasis.m %

7000000000000000000000
©/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

function B = getcolspacebasis(A)
[E jb]l = rref(A);
B = A(:,jb);



