Please Circle Your Recitation									
r1	Т	10	36-156	Russell Hewett	r7	Т	1	36-144	Vinoth Nandakumar
r2	Т	11	36 - 153	Russell Hewett	r8	Т	1	24 - 307	Aaron Potechin
r3	Т	11	24 - 407	John Lesieutre	r9	Т	2	24 - 307	Aaron Potechin
r4	Т	12	36 - 153	Stephen Curran	r10	Т	2	36 - 144	Vinoth Nandakumar
r5	Т	12	24 - 407	John Lesieutre	r11	Т	3	36 - 144	Jennifer Park
r6	Т	1	36 - 153	Stephen Curran					

(1) (7+7 pts)

(a) Suppose the nullspace of a square matrix A is spanned by the vector v = (4, 2, 2, 0). Find the reduced echelon form $R = \operatorname{rref}(A)$.

(b) Suppose S and T are subspaces of \mathbb{R}^5 and Y and Z are subspaces of \mathbb{R}^3 . When can they be the four fundamental subspaces of a 3 by 5 matrix B? Find any required conditions to have $S = C(B^T)$, T = N(B), Y = C(B), and $Z = N(B^T)$.

(2) **(6+6 pts.)**

(a) Find bases for all four fundamental subspaces of this R.

$$R = \left[\begin{array}{rrrr} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

(b) Find U, Σ, V in the Singular Value Decomposition $A = U\Sigma V^T$:

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 2 \\ 2 & -1 \end{bmatrix}.$$

(3) **(5+5 pts.)**

Suppose $q_1, \ldots q_5$ are orthonormal vectors in \mathbb{R}^5 . The 5 by 3 matrix A has columns q_1, q_2, q_3 .

(a) If $b = q_1 + 2q_2 + 3q_3 + 4q_4 + 5q_5$, find the best least squares solution \hat{x} to Ax = b.

(b) If terms of q_1 , q_2 , q_3 find the projection matrix P onto the column space of A.

(4) **(3+4+3 pts.)**

The matrix A is symmetric and also orthogonal.

(a) How is A^{-1} related to A?

(b) What number(s) can be eigenvalues of A and why?

(c) Here is an example of A. What are the eigenvalues of this matrix? I don't recommend computing with $det(A - \lambda I)$! Find a way to use part (b).

$$A = \begin{bmatrix} .5 & -.5 & -.1 & -.7 \\ -.5 & .5 & -.1 & -.7 \\ -.1 & -.1 & .98 & -.14 \\ -.7 & -.7 & -.14 & .02 \end{bmatrix}.$$

•

(5) (4+5+3 pts.)

Suppose the real column vectors q_1 and q_2 and q_3 are orthonormal.

(a) Show that the matrix $A = q_1 q_1^T + 2q_2 q_2^T + 5q_3 q_3^T$ has the eigenvalues $\lambda = 1, 2, 5$.

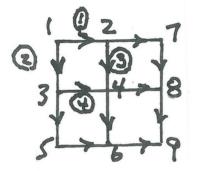
(b) Solve the differential equation du/dt = Au starting at any vector u(0). Your answer can involve the matrix Q with columns $q_{1, q_{2, q_{3, q_{3}}}}}}}} q_{1, q_{1, q_{1, q_{1, q_1}}}}}}} q_{1, q_{1, q_{1, q_1}}}}}}} q_{1, q_{1, q_{1, q_{1, q_{1, q_1}}}}}}}} q_{1, q_{1, q_{1, q_{1, q_{1, q_1}}}}}}}} q_{1, q_{1, q_{1, q_{1, q_{1, q_1}}}}}} q_{1, q_{1, q_{1, q_1}}}}$

(c) Solve the differential equation du/dt = Au starting from $u(0) = q_1 - q_3$.

(6) (4+3+3 pts.)

This graph has m = 12 edges and n = 9 nodes. Its 12 by 9 incidence matrix A has a single -1 and +1 in every row, to show the start and end nodes of the corresponding edge in the graph.

(a) Write down the 4 by 4 submatrix S of A that comes from the 4-node graph (a loop) in the corner. Find a vector x in the nullspace N(S) and a vector y in $N(S^T)$.



(b) For the whole matrix A, find a vector Y in $N(A^T)$. You won't need to write A or to know more edge numbers.

(c) The all-ones vector (1, 1, ..., 1) spans N(A). Find the dimension of the left nullspace $N(A^T)$ (give a number).

(7) (3+3+3+3 pts.)

The equation $y_{n+2} + By_{n+1} + Cy_n = 0$ has the solution $y_n = \lambda^n$ if $\lambda^2 + B\lambda + C = 0$. In most cases this will give two roots λ_1 , λ_2 and the complete solution is $y_n = c_1 \lambda_1^n + c_2 \lambda_2^n$.

Now solve the same problem the matrix way (slower). Create this vector unknown and vector equation $u_{n+1} = A u_n$.

$$u_n = \begin{bmatrix} y_n \\ y_{n+1} \end{bmatrix}$$
 and $\begin{bmatrix} y_{n+1} \\ y_{n+2} \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix} \begin{bmatrix} y_n \\ y_{n+1} \end{bmatrix}$.

- (a) What is the matrix A in that equation?
- (b) What equation gives the eigenvalues λ_1 and λ_2 of A?
- (c) If λ_1 is an eigenvalue, show directly that

$$A\begin{bmatrix}1\\\lambda_1\end{bmatrix} = \lambda_1\begin{bmatrix}1\\\lambda_1\end{bmatrix}$$
 so we have the eigenvector.

(d) If $\lambda_1 \neq \lambda_2$, what is now the complete solution u_n (including constants c_1 and c_2) to our equation $u_{n+1} = A u_n$? ((Then y_n is the first component of u_n .))

(8) **(5+5 pts.)**

(a) Find the determinant of this matrix A, using the cofactors of row 1.

$$A = \begin{bmatrix} 1 & b & 0 & 0 \\ b & 1 & b & 0 \\ 0 & b & 1 & b \\ 0 & 0 & b & 1 \end{bmatrix}.$$

(b) Find the determinant of A by the BIG formula with 24 terms. This means to find all the nonzero terms in that formula with their correct signs.

- (9) (6+4 pts.)
 - (a) Suppose $\mathbf{v} = (v_1, v_2, v_3)$ is a column vector, so $A = \mathbf{v}\mathbf{v}^T$ is a symmetric matrix. Show that A is positive semidefinite, using one of these tests:
 - 1. The eigenvalue test
 - 2. The determinant test
 - 3. The energy test on $x^T A x$.

(b) Suppose A is m by n of rank r. What conditions on m and n and r guarantee that $A^{T}A$ is positive definite? If those conditions fail, prove that $A^{T}A$ will not be positive definite.

