Please PRINT your name											_ 1. 2
Please Circle Your Recitation:3.											
	r1	Т	10	36-156	Russell Hewett	r7	Т	1	36-144	Vinoth Nandakumar	
	r2	Т	11	36 - 153	Russell Hewett	r8	Т	1	24 - 307	Aaron Potechin	
	r3	Т	11	24 - 407	John Lesieutre	r9	Т	2	24 - 307	Aaron Potechin	
	r4	Т	12	36 - 153	Stephen Curran	r10	Т	2	36 - 144	Vinoth Nandakumar	
	r5	Т	12	24 - 407	John Lesieutre	r11	Т	3	36 - 144	Jennifer Park	
	r6	Т	1	36 - 153	Stephen Curran						

(1) (40 pts)

In all of this problem, the 3 by 3 matrix A has eigenvalues $\lambda_1, \lambda_2, \lambda_3$ with independent eigenvectors x_1, x_2, x_3 .

(a) What are the trace of A and the determinant of A?

(b) Suppose: $\lambda_1 = \lambda_2$. Choose the true statement from 1, 2, 3:

- 1. A can be diagonalized. Why?
- 2. A can not be diagonalized. Why?
- 3. I need more information to decide. Why?
- (c) From the eigenvalues and eigenvectors, how could you find the matrix A? Give a formula for A and explain each part carefully.
- (d) Suppose $\lambda_1 = 2$ and $\lambda_2 = 5$ and $x_1 = (1, 1, 1)$ and $x_2 = (1, -2, 1)$. Choose λ_3 and x_3 so that A is symmetric positive semidefinite but not positive definite.

(2) (30 pts.)

Suppose A has eigenvalues $1, \frac{1}{3}, \frac{1}{2}$ and its eigenvectors are the columns of S:

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ with } S^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

(a) What are the eigenvalues and eigenvectors of A^{-1} ?

(b) What is the general solution (with 3 arbitrary constants c_1, c_2, c_3) to the differential equation du/dt = Au? Not enough to write e^{At} . Use the *c*'s.

(c) Start with the vector u = (1, 4, 3) from adding up the three eigenvectors: $u = x_1 + x_2 + x_3$. Think about the vector $v = A^k u$ for VERY large powers k. What is the limit of v as $k \to \infty$?

- (3) (30 pts.)
 - (a) For a really large number N, will this matrix be positive definite? Show why or why not.

$$A = \left[\begin{array}{rrr} 2 & 4 & 3 \\ 4 & N & 1 \\ 3 & 1 & 4 \end{array} \right].$$

(b) Suppose: A is positive definite symmetric Q is orthogonal (same size as A) B is $Q^T A Q = Q^{-1} A Q$

Show that: 1. B is also symmetric.

2. B is also positive definite.

(c) If the SVD of A is $U\Sigma V^T$, how do you find the orthogonal V and the diagonal Σ from the matrix A?

