Ρ	Please PRINT your name										
F			~•		-						2.
Please Circle your Recitation:											3.
	r1	Т	10	36-156	Russell Hewett	r7	Т	1	36-144	Vinoth Nandakumar	
	r2	Т	11	36 - 153	Russell Hewett	r8	Т	1	24 - 307	Aaron Potechin	
	r3	Т	11	24 - 407	John Lesieutre	r9	Т	2	24 - 307	Aaron Potechin	
	r4	Т	12	36 - 153	Stephen Curran	r10	Т	2	36 - 144	Vinoth Nandakumar	
	r5	Т	12	24 - 407	John Lesieutre	r11	Т	3	36 - 144	Jennifer Park	

(1) (40 pts)

1

36-153 Stephen Curran

r6 T

(a) If P projects every vector b in \mathbb{R}^5 to the nearest point in the subspace spanned by $a_1 = (1, 0, 1, 0, 4)$ and $a_2 = (2, 0, 0, 0, 4)$, what is the rank of P and **why?**

- (b) If these two vectors are the columns of the 5 by 2 matrix A, which of the four fundamental subspaces for A is the nullspace of P?
- (c) By Gram-Schmidt find an orthonormal basis for the column space of A (spanned by a_1 and a_2).

(d) If P is any (symmetric) projection matrix, show that Q = I - 2P is an orthogonal matrix.

(2) (30 pts.)

(a) Find the determinant of the matrix A

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$

·

(b) The absolute value of det A tells you the volume of a box in \mathbb{R}^4 . Describe that box (2 points – describe a different box with the same volume).

(c) Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that reduced matrix is not invertible, what fact does that tell you about A^{-1} ?

(3) (30 pts.) This 4 by 4 Hadmard matrix is an orthogonal matrix. Its columns are orthogonal unit vectors.

- (a) What projection matrix P_4 (give numbers) will project every b in \mathbb{R}^4 onto the line through q_4 ?
- (b) What projection matrix P_{123} will project every b in \mathbb{R}^4 onto the subspace spanned by q_1 , q_2 , and q_3 ? Remember that those columns are orthogonal.

(c) Suppose A is the 4 by 3 matrix whose columns are q_1, q_2, q_3 . Find the least-squares solution \hat{x} to the four equations

What is the error vector e?

