Problem Set 3 Solutions:

Section 3.2

6.

Elimination on A gives the row reduced echelon matrix $R = \begin{bmatrix} 1 & -3 & -5 \\ 0 & 0 & 0 \end{bmatrix}$

The free variables are x_2 and x_3 so the special solutions to Rx = 0 are (3, 1, 0) and (5, 0, 1).

Elimination on B gives the row reduced echelon matrix $R = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The free variable is x_2 so the special solution to Rx = 0 is (3, 1, 0).

For an m by n matrix the number of pivot variables plus the number of free variables is n.

14. If the first and last columns of a 3 by 5 matrix are the same and nonzero, then x_5 is a free variable. The special solution corresponding to x_5 is (-1, 0, 0, 0, 1).

15. Suppose an m by n matrix has r pivots. The number of special solutions is n - r. The nullspace contains only x = 0 when r = n. The column space is all of \mathbb{R}^m when r = m.

18. The plane x - 3y - z = 12 is parallel to the plane x - 3y - z = 0. One particular point on this plane is (12, 0, 0). All points on the plane have the form

$\begin{bmatrix} x \end{bmatrix}$]	12		3]	1	
y	=	0	+y	1	+z	0	
z		0	0	0		1	
L -	1	L _	1	L _	1	L _	1

Section 3.3

Problem 4:

If the matrix is an m by n matrix and all of the pivot variables come last instead of first, then the row reduced echelon form is

 $R = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix}$

where the upper right block is r by r.

The nullspace matrix N containing the special solutions is

 $N = \begin{bmatrix} I \\ 0 \end{bmatrix}$

where the top block is n - r by n - r and the bottom block is n - r by r.

28. The "row-and-column reduced form" for an m by n matrix of rank r is

 $R = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right]$

where the upper left block is r by r.

Section 3.4

3.

After elimination, we obtain the following equation

$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$\begin{array}{ccc} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$][$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	=	$\left[\begin{array}{c}1\\1\\0\end{array}\right]$
This h	as co	mple	te so	lutio	n
$\begin{bmatrix} x \end{bmatrix}$		1		Γ-	-3]
y	=	0	+ y	1	1
z		1			0

5. After elimination, we obtain the following equation

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ b_3 - 2b_1 - b_2 \end{bmatrix}$$

This is only solvable when $b_3 = 2b_1 + b_2$. If $b_3 = 2b_1 + b_2$, this has complete solution

$$\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 5b_1 - 2b_2\\ b_2 - 2b_1\\ 0 \end{bmatrix} + z \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$$

15. Suppose row 3 of U has no pivot. Then that row is 0. The equation Ux = c cannot be solved unless $c_3 = 0$ (although it may not be solvable even if $c_3 = 0$). The equation Ax = b might not be solvable.

17.

The largest possible rank of a 6 by 4 matrix is 4. Then there is a pivot in every column of U and R. The solution to Ax = B is always unique if it exists. The nullspace of A is 0. An example is

	1	0	0	0
	0	1	0	0
Λ	0	0	1	0
A =	0	0	0	1
	0	0	0	0
	0	0	0	0

Section 3.5

1.

1. If $c_1v_1 + c_2v_2 + c_3v_3 = \begin{bmatrix} c_1 + c_2 + c_3 \\ c_2 + c_3 \\ c_3 \end{bmatrix} = 0$

then $c_3 = 0$ which means that c_2 must also be 0 which means that c_1 must be zero as well. Thus $c_1v_1 + c_2v_2 + c_3v_3 = 0$ if and only if $c_1 = c_2 = c_3 = 0$. $-v_1 - v_2 + 4v_3 - v_4 = 0$ so v_1, v_2, v_3, v_4 are linearly dependent.

9. Suppose v_1, v_2, v_3, v_4 are 4 vectors in \mathbb{R}^3 . These vectors are linearly dependent because any set of n vectors in \mathbb{R}^m must be linearly dependent if n > m. The two vectors v_1 and v_2 will be dependent if one is a multiple of the other (note that 0 = 0v for any v). The vectors v_1 and (0, 0, 0) are dependent because $0v_1 + (0, 0, 0) = (0, 0, 0)$

16. 1 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$ c.

N(I) has empty basis (it is the zero vector space).

Problem 9:

For any subspace V of \mathbb{R}^n , we can do the following. Let d_V be the dimension of V and choose a basis v_1, \dots, v_{V_d} for V. Now let A be the d_V by n matrix with rows v_1, \dots, v_{V_d} . Using elimination, we can obtain a d_V by n row reduced echelon matrix R whose rows form another basis for V.

R has d_V pivots so the equation Rx = 0 has $n - d_V$ free variables. This implies that there are $n - d_V$ special solutions to Rx = 0 and these solutions form a basis for N(R) = N(A). Construct an n by $n - d_V$ matrix N_1 whose columns are these special solutions. N_1 is the nullspace matrix for A.

Now note that $AN_1 = RN_1 = 0$, so $N_1^T A^T = N_1^T R^T = 0$ which means that $V \subseteq N(N_1^T)$. Because of the way N_1 was constructed, it has $n - d_V$ pivots so the equation $N_1^T y = 0$ has d_V free variables. This implies that $N(N_1^T)$ has dimension d_V . $V \subseteq N(N_1^T)$ and V has dimension d_V , so we must have that $V = N(N_1^T)$.

V is the nullspace of an $n - d_V$ by n matrix N_1^T . Similarly, if W has dimension d_W then W is the nullspace of an $n - d_W$ by n matrix N_2^T . Letting N be the matrix obtained by putting N_1^T on top of N_2^T , $V \cap W = N(N_1^T) \cap N(N_1^T) = N(N)$. N is a $2n - d_V - d_W$ by n matrix so if $d_V + d_W > n$ then N has more columns then rows which implies that Nx = 0 has a nonzero solution and thus $V \cap W$ contains a nonzero vector, as needed.

Problem 10.

a.

When choosing an A which has zero row sums, we can choose $A_{11}, A_{12}, A_{21}, A_{22}, A_{31}, A_{32}$ and the other elements of A will be uniquely determined by our choices. Thus, one basis for the subspace of matrices with zero row sums is:

	0 0	0 0	0	,	0 0	0 0	0 0	,	$\begin{array}{c} 1\\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$^{-1}_{0}$,	0 0	$\begin{array}{c} 1 \\ 0 \end{array}$	$^{-1}_{0}$ -	,	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$0 \\ -1$.	,	000	$\begin{array}{c} 0 \\ 1 \end{array}$	$0 \\ -1$.	
	0	0	0		0	0	0		1	0	-1		0	1	-1		0	0	0		0	0	0	ļ
ſ	1	0	_1	1	ΓΟ	1	_1		0	0	0	1	0	0	0 -] [0	0	0 -	1	$\overline{0}$	0	0	1

For any matrix A,

 $A\begin{bmatrix} 1\\1\\1\\1\end{bmatrix} = \begin{bmatrix} A_{11} + A_{12} + A_{13}\\A_{21} + A_{22} + A_{23}\\A_{31} + A_{32} + A_{33}\end{bmatrix}$

which is 0 for any $A \in V$. Thus $(\overline{1}, 1, 1)$ is in N(A) for any $A \in V$.

When choosing an A which has zero column sums, we can choose $A_{11}, A_{12}, A_{13}, A_{21}, A_{22}, A_{23}$ and the other elements of A will be uniquely determined by our choices. Thus, one basis for the subspace of matrices with zero column sums is:

[1	0	0]	0	0	0]	0	1	0]	0	0	0]	0	0	1	1	0	0	0	1
	0	0	0	,	1	0	0	,	0	0	0	,	0	1	0	,	0	0	0	,	0	0	1	
	1	0	0		1	0	0		0	-1	0 _		0	-1	0		0	0	-1		0	0	-1 .	

b. $V \cap W$ has dimension 4. We can choose the elements $A_{11}A_{12}$, A_{21} , A_{22} freely and the other elements of A will be uniquely determined, so one basis for $V \cap W$ is

Γ	1	0	-1]	0	0	0		0	1	-1		0	0	0]
	0	0	0	,	1	0	-1	,	0	0	0	,	0	1	-1
L	-1	0	1		1	0	1		0	-1	1		0	-1	1

c. For all matrices $A \in V$, $A_{11} + A_{12} + A_{13} + A_{21} + A_{22} + A_{23} + A_{31} + A_{32} + A_{33} = 0$. The same relation holds for all matrices $B \in W$. Thus, for any matrix M of the form M = A + B where $A \in V, B \in W$, $M_{11} + M_{12} + M_{13} + M_{21} + M_{22} + M_{23} + M_{31} + M_{32} + M_{33} = 0$. Any matrix for which this is not true cannot be written in this form. One example is the identity matrix I.