
18.06 Professor Strang Quiz 3 – Solutions May 7th, 2012
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r03 T 12 4-159 Jennifer Park jmypark

r04 T 12 36-153 Rune Haugseng haugseng

r05 T 1 4-153 Dimiter Ostrev ostrev

r06 T 1 4-159 Uhi Rinn Suh ursuh

r07 T 1 66-144 Ailsa Keating ailsa

r08 T 2 66-144 Niels Martin Moller moller

r09 T 2 4-153 Dimiter Ostrev ostrev

r10 ESG Gabrielle Stoy gstoy



1 (33 pts.)

Suppose an n×n matrix A has n independent eigenvectors x1, . . . , xn. Then you could write

the solution to du
dt

= Au in three ways:

u(t) = eAtu(0), or

u(t) = SeΛtS−1u(0), or

u(t) = c1e
λ1tx1 + . . .+ cne

λntxn.

Here, S = [x1 | x2 | . . . | xn].

(a) From the definition of the exponential of a matrix, show why eAt is the same as SeΛtS−1.

Solution. Recall that A = SΛS−1, and Aktk = SΛktkS−1. Then, definition of the expo-

nential:

exp(At) =
∞∑
k=0

Aktk

k!
= S

(
∞∑
k=0

Λktk

k!

)
S−1 = SeΛtS−1.

�

(b) How do you find c1, . . . , cn from u(0) and S?

Solution. Since e0 = 1, we see that

u(0) = c1x1 + . . .+ cnxn = S


c1

...

cn

 ,
where we used the definition of the matrix product. Thus the answer is:


c1

...

cn

 = S−1u(0).

�
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(c) For this specific equation, write u(t) in any one of the (added: latter two of the) three

forms, using numbers not symbols: You can choose which form.

du

dt
=

 1 2

−1 4

u, starting from u(0) =

4

3

 .
Solution. We diagonalize A and get:

A =

2 1

1 1

2 0

0 3

 1 −1

−1 2

 .
Thus c =

1

2

, so for the second form

u(t) =

2 1

1 1

2 0

0 3

 1 −1

−1 2

4

3

 =

2 1

1 1

e2t 0

0 e3t

1

2

 ,
while in the third form:

u(t) = e2t

2

1

+ 2e3t

1

1

 .
�
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2 (30 pts.)

This question is about the real matrix

A =

1 c

1 −1

 , for c ∈ R.

(a) - Find the eigenvalues of A, depending on c.

- For which values of c does A have real eigenvalues?

Solution. Since 0 = trA = λ1 + λ2, we see that λ2 = −λ1.

Also, −1− c = detA = −λ2
1. Thus,

λ = ±
√

1 + c.

Therefore,

the eigenvalues are real precisely when c ≥ −1.

�
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(b) - For one particular value of c, convince me that A is similar to both the matrix

B =

2 0

0 −2

 ,
and to the matrix

C =

2 2

0 −2

 .
- Don’t forget to say which value c this happens for.

Solution. If two matrices are similar, then they do have the same eigenvalues (those are

2,−2 for both B and C). Here we must therefore have 0 = trA and −1 − c = detA =

−4. We see that this happens precisely when c = 3, where we check that indeed the

eigenvalues are 2,−2. However, this does not guarantee that they are similar - and hence

is not convincing.

Convincing: The eigenvalues 2,−2 are different, so both A, B and C are diagonalizable,

with the same diagonal matrix (for example to Λ = B!). Therefore A, B and C are all

similar when c = 3. �
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(c) For one particular value of c, convince me that A cannot be diagonalized. It is not similar

to a diagonal matrix Λ, when c has that value.

- Which value c?

- Why not?

Solution. As we saw above, trA = 0, so regardless of c the eigenvalues come in pairs

λ2 = −λ1. This means that whenever λ1 6= 0, we have two different eigenvalues, and

hence A is diagonalizable (not what we’re after).

Thus we need λ1 = λ2 = 0, a repeated eigenvalue, which happens when c = −1 (so

detA = 0) as the only suspect – does it work?

Convincing: For c = −1, we have N(A− 0 · I) = span


1

1


With only a 1-dimensional space of eigenvectors for the matrix, we are convinced that

A is not diagonalizable for c = −1. �
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3 (37 pts.)

(a) Suppose A is an n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.

- What is the largest number real number c that can be subtracted from the diagonal

entries of A, so that A− cI is positive semidefinite?

- Why?

Solution. - We first realize that: If A is symmetric, then A− cI is also symmetric, since

in general (A+B)T = AT +BT (simple, but very important to check!).

- Then we realize that the eigenvalues of A − cI are λ1 − c ≤ λ2 − c ≤ . . . ≤ λn − c.

Therefore:

c = λ1 is the largest that can ensure positive semidefiniteness (and it does).

�
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(b) Suppose B is a matrix with independent columns.

- What is the nullspace N(B)?

- Show that A = BTB is positive definite. Start by saying what that means about xTAx.

Solution. - Then Bx = 0 only has the zero solution, so N(B) = {0}.

- Again, we start by observing that AT = A is symmetric. Then we recall what positive

definite means (the "energy" test):

xTAx > 0 whenever x 6= 0.

Thus, we see here (by definition the inner product property of the transpose of a matrix):

xTAx = xT (BT (Bx)) = (Bx)T (Bx) = ‖Bx‖2 ≥ 0.

So A = BTB is positive semidefinite. But finally, the equality ‖Bx‖2 = 0, only happens

when Bx = 0 which by N(B) = {0} means x = 0. �
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(c) This matrix A has rank r = 1:

A =

1 1

2 2

 .
- Find its largest singular value σ from ATA.

- From its column space and row space, respectively, find unit vectors u and v so that

Av = σu, and A = uσvT .

- From the nullspaces of A and AT put numbers into the full SVD (Singular Value

Decomposition) of A:

A =


| |

u . . .

| |



σ 0

0 . . .



| |

v . . .

| |


T

.

Solution. We compute:

ATA =

5 5

5 5

 .
Thus the two eigenvalues are λ1 = 0 and λ2 = 10, and σ =

√
10. For v, we find a vector

in N(ATA− 10I), and normalize to unit length:

v =

1/
√

2

1/
√

2

 .
Then we find u using

u =
Av

σ
=

1/
√

5

2/
√

5

 .
Since we have the orthogonal sums of subspaces R2 = Rm = c(A) ⊕ N(AT ) and also

R2 = Rn = c(AT ) ⊕ N(A), we need to find one unit vector from each of N(A) and

N(AT ) and augment to v and u, respectively:

v2 =

 1
√

2

−1
√

2

 ∈ N(A),

u2 =

−2/
√

5

1/
√

5

 ∈ N(AT ),
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Thus, we finally see the full SVD:

A = UΣV T =

1/
√

5 −2
√

5

2/
√

5 1/
√

5

√10 0

0 0

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

T .
We remember, as a final check, to verify that the square matrices U and V both contain

orthonormal bases of R2 as they should:

UUT = I2,

V V T = I2.

�
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