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1 (33 pts.)
Suppose an n X n matrix A has n independent eigenvectors x1,...,x,. Then you could write

the solution to Cfi—? = Au in three ways:
u(t) = eMu(0), or
u(t) = SeMS~u(0), or
u(t) = creMay 4 .. 4 cpe™ia,.
Here, S = [z1 | xa | ... | @]
(a) From the definition of the exponential of a matrix, show why e is the same as Se’S~1.

Solution. Recall that A = SAS™!, and A** = SA*#*S—1. Then, definition of the expo-

nential:

©  Akyk % Akpk
exp(At) = At =S (Z A—t> S = GeMsTL

k! k!
k=0 k=0
O
(b) How do you find ¢, ..., ¢, from u(0) and S?
Solution. Since € = 1, we see that
1
u0)=cz1+ ...+, =8|,
Cn
where we used the definition of the matrix product. Thus the answer is:
&1
= 57 u(0).
Cn
O
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(c) For this specific equation, write u(¢) in any one of the (added: latter two of the) three

forms, using numbers not symbols: You can choose which form.

J 12 4
u _ u, starting from (0) =

dt | _1 4 3

Solution. We diagonalize A and get:

A=
1 1110 3] |—-1 2
Thus ¢ = , so for the second form
2
2 1] 1]12 0 1 —1f (4 2 1] |e* 0 1
u(t) = = s
1 1110 3] |—-1 213 1 1 0 et |2

while in the third form:
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2 (30 pts.)

This question is about the real matrix

A= , for ceR.

(a) - Find the eigenvalues of A, depending on c.

- For which values of ¢ does A have real eigenvalues?

Solution. Since 0 = trA = A\ + A9, we see that Ay = — 1.

Also, =1 — ¢ = det A = —\?. Thus,

A==1vV1+e.

Therefore,

the eigenvalues are real precisely when ¢ > —1.
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(b) - For one particular value of ¢, convince me that A is similar to both the matrix

2 0
B = ,
0 —2
and to the matrix ~ _
2 2
C= .
0 —2

- Don’t forget to say which value ¢ this happens for.

Solution. If two matrices are similar, then they do have the same eigenvalues (those are
2, —2 for both B and C'). Here we must therefore have 0 = trA and —1 — ¢ = det A =
—4. We see that this happens precisely when ¢ = 3, where we check that indeed the
eigenvalues are 2, —2. However, this does not guarantee that they are similar - and hence

is not convincing.

Convincing: The eigenvalues 2, —2 are different, so both A, B and C are diagonalizable,

with the same diagonal matrix (for example to A = B!). Therefore A, B and C are all

similar when ¢ = 3. O
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(c) For one particular value of ¢, convince me that A cannot be diagonalized. It is not similar
to a diagonal matrix A, when ¢ has that value.
- Which value c?
- Why not?

Solution. As we saw above, trA = 0, so regardless of ¢ the eigenvalues come in pairs
A2 = —A;. This means that whenever \; # 0, we have two different eigenvalues, and
hence A is diagonalizable (not what we'’re after).

Thus we need \; = Ay = 0, a repeated eigenvalue, which happens when ¢ = —1 (so

det A = 0) as the only suspect — does it work?

Convincing: For ¢ = —1, we have N(A —0-I) = span

With only a 1-dimensional space of eigenvectors for the matrix, we are convinced that

A is not diagonalizable for ¢ = —1. O
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3 (37 pts.)
(a) Suppose A is an n X n symmetric matrix with eigenvalues A\; < Xy < ... < A,.
- What is the largest number real number ¢ that can be subtracted from the diagonal

entries of A, so that A — ¢l is positive semidefinite?

- Why?

Solution. - We first realize that: If A is symmetric, then A — ¢[ is also symmetric, since
in general (A + B)T = AT 4+ BT (simple, but very important to check!).
- Then we realize that the eigenvalues of A —cl are Ay —c < Ay —c < ... < )\, —c

Therefore:

¢ = A1 is the largest that can ensure positive semidefiniteness (and it does).
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(b) Suppose B is a matrix with independent columns.
- What is the nullspace N(B)?
- Show that A = BT B is positive definite. Start by saying what that means about 27 Ax.

Solution. - Then Bx = 0 only has the zero solution, so N(B) = {0}.

- Again, we start by observing that AT = A is symmetric. Then we recall what positive

definite means (the "energy" test):

2T Az >0 whenever x # 0.

Thus, we see here (by definition the inner product property of the transpose of a matrix):

o' Az = 27 (BT (Bx)) = (Bx)"(Bz) = ||Bx|* > 0.

So A = BT B is positive semidefinite. But finally, the equality ||Bz||* = 0, only happens
when Bz = 0 which by N(B) = {0} means x = 0. O
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(c¢) This matrix A has rank r = 1:

1 1
2 2

A:

- Find its largest singular value o from AT A.

- From its column space and row space, respectively, find unit vectors u and v so that

Av =ou, and A=uov’.

- From the nullspaces of A and AT put numbers into the full SVD (Singular Value

Decomposition) of A:

Solution. We compute:

5 5
5 5

ATA =

Thus the two eigenvalues are Ay = 0 and Ay = 10, and o = +/10. For v, we find a vector
in N(ATA —107I), and normalize to unit length:

1/v/2
1/v2|

Then we find v using

Av |1 V5
u=-—= W :
Since we have the orthogonal sums of subspaces R? = R™ = ¢(A) & N(AT) and also
R? = R" = ¢(AT) @ N(A), we need to find one unit vector from each of N(A) and

N(AT) and augment to v and u, respectively:

Vg = 1\/5 S N(A),

__1\/5

U = S N(AT),
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Thus, we finally see the full SVD:

A=UxVT =

1/v/5 =25 [V10 0
2/v5 1/V/5 0 0

1/vV2 1/V2
1/vV2 —1/V2

We remember, as a final check, to verify that the square matrices U and V' both contain

orthonormal bases of R? as they should:

Uut = I,

vVt = [,.
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