18.06 Spring 2012 — Problem Set 7

This problem set is due Thursday, April 19th, 2012 at 4pm (hand in to Room 2-106). The
textbook problems are out of the 4th edition. For computational problems, please include a
printout of the code with the problem set (for MATLAB in particular, diary(’filename’)
will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

1. Do Problem 2 from Section &.3.
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Solution. Since [ 82 ] and [ 1 } are the eigenvector vectors for the eigenvalues 1
and 0.75, respectively,
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2. Do Problem 7 from Section 8.3 (do also the "challenge problem" part).

Solution. The eigenvalues are 1 and 0.5, and the eigenvectors are

od] = [ 4]
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Challenge problem Let A = [ } ,0 < a,b <1, be a Markov Matrix

l1—a 1-0b

0i

with steady state [ 0.6 } . Then
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Hence 0.6a + 0.4b = 0.6. In other words,

[06+04z 0.4—04z

A= 0.6 — 0.6z 0.4+ 0.6x

for some —% < x < 1.
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. Do Problem 9 from Section &.3.

Solution. If every entry of A is nonnegative, every entry of A? is also nonnegative.
Since, for any j =1,---,n, > .(A)y; =1,

Z(Az)ij = Zaz‘kakj = Zzaikakj = (Z <Z az‘k) akj) = Zakj = 1.

i

. Do Problem 12 from Section 8.3.

Solution. The eigenvalues are A1 = 0 and Ay = —0.5. We have a steady state for the
Markov matrix A. For the steady state v, (A — I)v =0 = 0v. So A — I have A = 0.
If u; = eMbeyzy + eM2tegxs for the initial value ug = ey + o2, Uy converges to c1xy
as t — oo. O

. Do Problem 4 from Section 6.3.

dlv+w) _
Udtw =0.

Solution. v + w is constant if and only if

dv+w) dv dw
— —E—i—a—(w—v)—i—(v—w)—o,

so v + w is constant.

Let u = [ v ] Then
w
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(=1—=X)2—=1=1+2A+A?—1 = A(\+2) so the eigenvalues are \; = 0, Ao = —2. We

The eigenvalue of A = [ } is given by solving det(A—AI) = 0. det(A—\I) =

1 1
then observe that the corresponding eigenvectors are x; = [ 1 ] and xo = { 1 ],

respectively.



Then the pure exponential solutions are given by

ur(t) = eMlzy = [ ' ]

1
up(t) = eMlay = e [ 1 ]

So the complete solutions are given by

u(t):C’[ ”+De—2t[ ! ]:[gfgjz}

From the initial condition that u(0) = { } = [ ?8 ], we get C' =20, D = 10.
That is,

v(t) =20 + 10e™%
w(t) =20 — 10~ 2.

So v(1) = 20 + 10e~2,w(1) = 20 — 10e 2, v(c0) = w(o0) = 20.

. Do Problem 5 from Section 6.3.

Solution. Now we have

at 1 1

The eigenvalues of —A are given by —1 times the eigenvalues of A, so now we have
A1 = 0, A2 = 2. The corresponding eigenvectors are the same as those of A, namely

o= o= ] 4|

Then the pure exponential solutions are given by

du —Au:{l _1]u.

wn(t) = Mlay — [ X }

UQ(t) — 6)‘2tl‘2 — th [ _11 :|

So the complete solutions are given by
B 1 w| 1] [ C+De*
u(t)—C[l]JrDe |:—1:|_|:C—D€2t .
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From the initial conditions u(0) = [ v(0) } = { 10

w(0)
v(t) = 20 + 10e?. So as t — o0, v — 00.

],wegetC—QO,D—IO, and

O



7. Do Problem 12 from Section 6.3.
Solution. Substituting y = e into y” = 6y — 9y gives
N2t = greM — 9t

so eM(\ — 3)2 = 0, which means A = 3 is a repeated root.

In terms of the matrix equation, since the matrix has trace 6 and determinant 9, its

. . . . . 1
only eigenvalue is 3, with one independent eigenvector [ 1 ] .

To show that y = te® is the second solution, just substitute this into the original
differential equation. Since we have:

y = e* + 3te
Y’ = 3e3" + (3e3 + 9ted) = 63t + 9te?.

Also,
6y’ — 9y = 63 + 18te3t — 9te3 = 6e3 + 9te™,

so we see that y” = 6y’ — 9y when y = te3t.

8. Do Problem 24 from Section 6.3.
Solution. A is an upper-triangular matrix, so we can read off its eigenvalues as the di-

agonal entries: 1, 3. By inspection we see that (1,0) is an eigenvector with eigenvalue
1. To find an eigenvector with eigenvalue 3 we observe

A== ().

and so (1,2) is in its nullspace. Thus

and

Thus

(o) (26 )6

When ¢ = 0 this is (3 9), as expected. Differentiating with respect to ¢, we get

et %(363t—et) '
0 3¢t ’

at t =0 thisis ({ §) = A. O



9. Do Problem 26 from Section 6.3.

Solution. e

4t is nonsingular because

At

(a) its inverse is given by e,

(b) its eigenvalues are e’ where \ is an eigenvalue of A — thus 0 is never an eigenvalue

of et

O]

10. Do Problem 30 from Section 6.3.

_ -1 .
Solution. (a) <A2/2 Alt/z) = Wlt)Z/‘l (_Alt/Q Atl/z), so if U, = (Y, Z,) we have

B 1 1 At)2 1 At/2 _

Oess = rmr (o 1) (i 1) v a0,

where
_ 1 1—(At)?/4 At
A= 1+ (At)2/4 < —At 1- (At)2/4) '

Then

B 1 1— (At)?/4 —At 1— (At)?/4 At
At = (1+ (At)2/4)? < At 1— (At)2/4) ( —At 1— (At)2/4>

_ 1 (1 — (At)?/4)% + (At)? 0

- (1+ (A)2/4)? ( 0 (1—(A)?/4)% + (At)2>

If B = ~Band A= (I — B)"Y(I + B) then ATA = (I + BY)(I - BY)~'(I —
B)~Y(I+B) = (I-B)(I+B)~'(I-B)~Y(I+B). But notice that (I+B)(I—-B) =
I—B? = (I-B)(I+ B), hence this equals (I —B)(I-B)"'(I+B)"'(I+B) =1.
Similarly AAT = (I - B)™'\(I+ B)I - B) I+ B)' =({I—-B)"'(I-B)(I+
B)(I+ B)™! =1, so A is indeed orthogonal.

If At = 27/32 then using Matlab to compute A3? gives

0.9998 —0.0201
0.0201  0.9998 )’

which is close to the identity, but there is clearly a potentially significant error.
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