
18.06 Spring 2012 – Problem Set 7

This problem set is due Thursday, April 19th, 2012 at 4pm (hand in to Room 2-106). The
textbook problems are out of the 4th edition. For computational problems, please include a
printout of the code with the problem set (for MATLAB in particular, diary(’filename’)
will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

1. Do Problem 2 from Section 8.3.

Solution. Since
[

0.6
0.4

]
and

[
−1
1

]
are the eigenvector vectors for the eigenvalues 1

and 0.75, respectively,

S =

[
0.6 −1
0.4 1

]
.

Ak approches to

S

[
1 0
0 0

]
S−1 =

[
0.6 0.6
0.4 0.4

]
.

2. Do Problem 7 from Section 8.3 (do also the "challenge problem" part).

Solution. The eigenvalues are 1 and 0.5, and the eigenvectors are[
0.6
0.4

]
and

[
1
−1

]
.

Since

Ak = S

[
1 0
0 0.5

]k
S−1,

for

S =

[
0.6 1
0.4 −1

]
,

A∞ = S

[
1 0
0 0

]
S−1 =

[
0.6 0.6
0.4 0.4

]
.

Challenge problem Let A =

[
a b

1− a 1− b

]
, 0 ≤ a, b ≤ 1, be a Markov Matrix

with steady state
[

0.6
0.4

]
. Then

A

[
0.6
0.4

]
=

[
0.6
0.4

]
.

1



Hence 0.6a+ 0.4b = 0.6. In other words,

A =

[
0.6 + 0.4x 0.4− 0.4x
0.6− 0.6x 0.4 + 0.6x

]
for some −2

3 ≤ x ≤ 1.

3. Do Problem 9 from Section 8.3.

Solution. If every entry of A is nonnegative, every entry of A2 is also nonnegative.
Since, for any j = 1, · · · , n,

∑
i(A)ij = 1,

∑
i

(A2)ij =
∑
i,k

aikakj =
∑
k

∑
i

aikakj =

(∑
k

(∑
i

aik

)
akj

)
=
∑
k

akj = 1.

4. Do Problem 12 from Section 8.3.

Solution. The eigenvalues are λ1 = 0 and λ2 = −0.5. We have a steady state for the
Markov matrix A. For the steady state v, (A − I)v = 0 = 0v. So A − I have λ = 0.
If ut = eλ1tc1x1 + eλ2tc2x2 for the initial value u0 = c1x1 + c2x2, ut converges to c1x1

as t→∞.

5. Do Problem 4 from Section 6.3.

Solution. v + w is constant if and only if d(v+w)
dt = 0.

d(v + w)

dt
=
dv

dt
+
dw

dt
= (w − v) + (v − w) = 0,

so v + w is constant.

Let u =

[
v
w

]
. Then

du

dt
=

[
dv
dt
dw
dt

]
=

[
w − v
v − w

]
=

[
−1 1
1 −1

] [
v
w

]
.

The eigenvalue of A =

[
−1 1
1 −1

]
is given by solving det(A−λI) = 0. det(A−λI) =

(−1−λ)2−1 = 1+2λ+λ2−1 = λ(λ+2) so the eigenvalues are λ1 = 0, λ2 = −2. We

then observe that the corresponding eigenvectors are x1 =

[
1
1

]
and x2 =

[
1
−1

]
,

respectively.
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Then the pure exponential solutions are given by

u1(t) = eλ1tx1 =

[
1
1

]
u2(t) = eλ2tx2 = e−2t

[
1
−1

]
So the complete solutions are given by

u(t) = C

[
1
1

]
+De−2t

[
1
−1

]
=

[
C +De−2t

C −De−2t

]
.

From the initial condition that u(0) =

[
v(0)
w(0)

]
=

[
30
10

]
, we get C = 20, D = 10.

That is,

v(t) = 20 + 10e−2t

w(t) = 20− 10e−2t.

So v(1) = 20 + 10e−2, w(1) = 20− 10e−2, v(∞) = w(∞) = 20.

6. Do Problem 5 from Section 6.3.

Solution. Now we have
du

dt
= −Au =

[
1 −1
−1 1

]
u.

The eigenvalues of −A are given by −1 times the eigenvalues of A, so now we have
λ1 = 0, λ2 = 2. The corresponding eigenvectors are the same as those of A, namely

x1 =

[
1
1

]
and x2 =

[
1
−1

]
.

Then the pure exponential solutions are given by

u1(t) = eλ1tx1 =

[
1
1

]
u2(t) = eλ2tx2 = e2t

[
1
−1

]
So the complete solutions are given by

u(t) = C

[
1
1

]
+De2t

[
1
−1

]
=

[
C +De2t

C −De2t

]
.

From the initial conditions u(0) =

[
v(0)
w(0)

]
=

[
30
10

]
, we get C = 20, D = 10, and

v(t) = 20 + 10e2t. So as t→∞, v →∞.
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7. Do Problem 12 from Section 6.3.

Solution. Substituting y = eλt into y′′ = 6y′ − 9y gives

λ2eλt = 6λeλt − 9eλt,

so eλt(λ− 3)2 = 0, which means λ = 3 is a repeated root.

In terms of the matrix equation, since the matrix has trace 6 and determinant 9, its

only eigenvalue is 3, with one independent eigenvector
[

1
1

]
.

To show that y = te3t is the second solution, just substitute this into the original
differential equation. Since we have:

y′ = e3t + 3te3t

y′′ = 3e3t + (3e3t + 9te3t) = 6e3t + 9te3t.

Also,
6y′ − 9y = 6e3t + 18te3t − 9te3t = 6e3t + 9te3t,

so we see that y′′ = 6y′ − 9y when y = te3t.

8. Do Problem 24 from Section 6.3.

Solution. A is an upper-triangular matrix, so we can read off its eigenvalues as the di-
agonal entries: 1, 3. By inspection we see that (1, 0) is an eigenvector with eigenvalue
1. To find an eigenvector with eigenvalue 3 we observe

A− 3I =
(−2 1

0 0

)
,

and so (1, 2) is in its nullspace. Thus

S = ( 1 1
0 2 )

and

A = SΛS−1 =
1

2

(
1 1
0 2

)(
1 0
0 3

)(
2 −1
0 1

)
.

Thus

eAt = SeΛtS−1 =
1

2

(
1 1
0 2

)(
et 0
0 e3t

)(
2 −1
0 1

)
=

(
et 1

2(e3t − et)
0 e3t

)
.

When t = 0 this is ( 1 0
0 1 ), as expected. Differentiating with respect to t, we get(

et 1
2(3e3t − et)

0 3e3t

)
;

at t = 0 this is ( 1 1
0 3 ) = A.
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9. Do Problem 26 from Section 6.3.

Solution. eAt is nonsingular because

(a) its inverse is given by e−At,

(b) its eigenvalues are eλt where λ is an eigenvalue of A— thus 0 is never an eigenvalue
of eAt.

10. Do Problem 30 from Section 6.3.

Solution. (a)
(

1 −∆t/2
∆t/2 1

)−1
= 1

1+(∆t)2/4

(
1 ∆t/2

−∆t/2 1

)
, so if Un = (Yn, Zn) we have

Un+1 =
1

1 + (∆t)2/4

(
1 ∆t/2

−∆t/2 1

)(
1 ∆t/2

−∆t/2 1

)
Un = AUn

where

A =
1

1 + (∆t)2/4

(
1− (∆t)2/4 ∆t
−∆t 1− (∆t)2/4

)
.

Then

ATA =
1

(1 + (∆t)2/4)2

(
1− (∆t)2/4 −∆t

∆t 1− (∆t)2/4

)(
1− (∆t)2/4 ∆t
−∆t 1− (∆t)2/4

)
=

1

(1 + (∆t)2/4)2

(
(1− (∆t)2/4)2 + (∆t)2 0

0 (1− (∆t)2/4)2 + (∆t)2

)
=

(
1 0
0 1

)
.

If BT = −B and A = (I − B)−1(I + B) then ATA = (I + BT)(I − BT)−1(I −
B)−1(I+B) = (I−B)(I+B)−1(I−B)−1(I+B). But notice that (I+B)(I−B) =
I−B2 = (I−B)(I+B), hence this equals (I−B)(I−B)−1(I+B)−1(I+B) = I.
Similarly AAT = (I − B)−1(I + B)(I − B)(I + B)−1 = (I − B)−1(I − B)(I +
B)(I +B)−1 = I, so A is indeed orthogonal.

(b) If ∆t = 2π/32 then using Matlab to compute A32 gives(
0.9998 −0.0201
0.0201 0.9998

)
,

which is close to the identity, but there is clearly a potentially significant error.
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