18.06 Spring 2012 – Problem Set 3

This problem set is due Thursday, March 1st, 2012 at 4pm (hand in to Room 2-106). The textbook problems are out of the 4th edition. For computational problems, please include a printout of the code with the problem set (for MATLAB in particular, diary('filename') will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

- 1. Without asking anyone for help, write down an accurate definition of what it means for a matrix to be in reduced row echelon form (RREF).
- 2. TRUE or FALSE? (No need for explanation):
 - (a) Every upper-triangular matrix is in reduced row echelon form?
 - (b) Every lower-triangular matrix is in reduced row echelon form?
 - (c) Every permutation matrix is in reduced row echelon form?
 - (d) The following matrix is in reduced row echelon form?

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (e) The reduced row echelon form of A is unique?
- (f) The full solution set of Ax = b, where A is $m \times n$ and $b \in \mathbb{R}^m$, is always a vector subspace of \mathbb{R}^n ?
- (g) The difference $\mathbf{a} = \mathbf{x}_1 \mathbf{x}_2$, between any two solutions \mathbf{x}_1 and \mathbf{x}_2 to $A\mathbf{x} = \mathbf{b}$, is a vector that belongs to the null space N(A)? (Apply the rule $A(\mathbf{x} + \lambda \mathbf{y}) = A\mathbf{x} + \lambda A\mathbf{y}$ to $A(\mathbf{x}_1 \mathbf{x}_2)$ to answer the question).
- 3. Do Problems 20 & 23 from Section 3.2.
- 4. Do Problem 35 from Section 3.2.
- 5. Do Problems 3 & 8 from Section 3.3.
- 6. Do Problems 17 & 28 from Section 3.3.
- 7. Do Problems 5 & 16 from Section 3.4.
- 8. Do Problems 24 & 33 from Section 3.4.
- Do Problem 9 from Section 3.5.(See Problem 10 on next page!)

10. In this exercise, we try MATLAB's function null(A) for finding a basis (i.e. a minimal set of spanning vectors = a maximal set of independent vectors) for the null space of a matrix. We also try rref(A) for finding the reduced row echelon form.

```
B = [1]
       0
          0 0;
             0;
      0
          0 1;
       1
             0];
          0
C = [1]
       2 1 - 2;
    0
       0
         1
             5;
    0
       0
          0
             0;
             0];
D = [1]
       2
          0
       2
         2 1;
    0 0 3 3;
    1 0 0 4];
```

- (a) Using null(), find a basis of each of N(B), N(C) and N(D) (the column vectors in the matrix MATLAB outputs are the basis vectors). Same for N(BC) and N(DC).
- (b) Figure out whether N(C) and N(DC) are the same subspaces of \mathbb{R}^4 , as follows: \longrightarrow MATLAB can easily perform this, if we make use of the following two facts, for V and W subspaces of \mathbb{R}^n with given collections of vectors used for spanning them, respectively $\mathbf{v}_1, \ldots, \mathbf{v}_k$ spanning V and $\mathbf{w}_1, \ldots, \mathbf{w}_l$ spanning W.

<u>Fact 1:</u> A vector $\mathbf{b} \in \mathbb{R}^4$ belongs to V if and only if the system $A\mathbf{x} = \mathbf{b}$ has at least one solution, where $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k]$ is the matrix which as columns has a collection of vectors we use to span V.

Example (2×2) : In MATLAB we create the augmented matrix $[A|\mathbf{b}]$ and use the command rref.

(Note: The augmentation bars in the output will not show in MATLAB).

Notice the zero row that has a non-zero entry to the right of the bar: This system $A\mathbf{x} = \mathbf{b}$ has no solution. Hence, $\mathbf{b} = [1, 1]^T$ is not in the subspace spanned by the columns of A.

<u>Fact 2</u>: Two subspaces are the same, V = W, if and only if:

- i. Vectors spanning V lie in W, that is $\mathbf{v}_1, \dots, \mathbf{v}_k \in W$ (so $V \subseteq W$), and
- ii. Vectors spanning W lie in V, that is $\mathbf{w}_1, \dots, \mathbf{w}_k \in V$ (so $W \subseteq V$).

Example: Referring to the previous example, the subspace V spanned by the vectors \mathbf{b} and $[0,1]^T$ cannot be the same as the subspace W spanned by the columns of A (since we saw $\mathbf{b} \notin W$).

Now, for using Fact 1 & Fact 2 in MATLAB to determine if N(C) and N(DC) are in fact the same, you will need the ":" option:

>> A(:,2) %Example: Gives you the 2nd column from matrix A

Then proceed as in the examples, checking each basis vector from one space for membership of the other space.

- (c) Which property of the square matrix D explains the result of your comparison of N(C) and N(DC)? State this as a general rule, and put a box around it. Apply your rule to explain why N(DC) and N(BC) are the same subspace.
- (d) Is N(CB) the same as N(C)? Either use the method from (b) again (you can do it all at once using rref([null(CB) null(C)]), if you carefully read off the result!), or simply try applying CB to the basis vectors you found for N(C), and vice versa.