18.06 Spring 2012 - Problem Set 1 - Solutions

This problem set is due Thursday, February 16th, 2012 at 4pm (hand in to Room 2-106). The textbook problems are out of the 4th edition. For computational problems, please include a printout of the code with the problem set (for MATLAB in particular, diary('filename') will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

1. Do Problem 8 from Section 1.3.

Solution to 1.3.8:

$$x_{1} - 0 = b_{1}$$

$$x_{2} - x_{1} = b_{2}$$

$$x_{3} - x_{2} = b_{3}$$

$$x_{4} - x_{3} = b_{4}$$

$$x_{4} = b_{1} + b_{2} + b_{3}$$

$$x_{4} = b_{1} + b_{2} + b_{3} + b_{4}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \end{bmatrix} = A^{-1}\mathbf{b}$$

2. Do Problem 8 & Problem 32 from Section 2.2.

Solution to 2.2.8:

If k = 3, then elimination must fail: No solution. If k = -3, elimination gives 0 = 0 in equation 2: Infinitely many solutions. If k = 0 a row exchange is needed: Exactly one solution.

Solution to 2.2.32:

The question deals with 100 equations Ax = 0 when A is singular.

- (a) Some linear combination of the 100 rows is the row of 100 zeros.
- (b) Some linear combination of the 100 columns is the column of zeros.
- (c) A very singular matrix has all ones: $A = \mathbf{eye}(100)$. A better example has 99 random rows (or the numbers $1^i, \ldots, 100^i$ in those rows). The 100th row could be the sum of the first 99 rows (or any other combination of those rows with no zeros).
- (d) The row picture has 100 planes meeting along a common line through 0. The column picture has 100 vectors all in the same 99-dimensional hyperplane.
- 3. Do Problem 22 from Section 2.3.

Solution to 2.3.22:

- (a) $\sum a_{3i}x_i$.
- (b) $a_{21} a_{11}$.

(c) $a_{21} - 2a_{11}$.

(d)
$$(EAx)_1 = (Ax)_1 = \sum_i a_{1i}x_i$$
.

4. Do Problem 19 & Problem 36 from Section 2.4.

Solution to 2.4.19:

(a) a_{11} .

(b) $l_{31} = a_{31}/a_{11}$.

(c)
$$a_{32} - \left(\frac{a_{31}}{a_{11}}\right) a_{12}$$
.

(d)
$$a_{22} - \left(\frac{a_{21}}{a_{11}}\right) a_{12}$$
.

Solution to 2.4.36:

Multiplying AB = (m by n)(n by p) needs mnp multiplications. Then (AB)C needs mpq more. Multiply BC = (n by p)(p by q) needs npq and then A(BC) needs mnq.

- (a) If m, n, p, q are 2, 4, 7, 10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, so that we multiply that 7 by 10 matrix by as few rows as possible.
- (b) If u, v, w are N by 1, then $(u^T v)w^T$ needs 2N multiplications but $u^T(vw^T)$ needs N^2 to find vw^T and N^2 more to multiply by the row vector u^T . Apologies to use the transpose symbol so early.
- (c) We are comparing mnp + mpq with mnq + npq. Divide all terms by mnpq: Now we are comparing $q^{-1} + n^{-1}$ with $p^{-1} + m^{-1}$. This yields a simple important rule. If matrices A and B are multiplying v for ABv, don't multiply the matrices first.
- 5. For which values of q (if any) is the following system consistent (= solvable)?

$$x + 4y + 3z = 1,$$

$$q^{3}x + 4q^{3}y + 3q^{3}z = 64q.$$

Solution: We write the system as a matrix equation

$$\begin{bmatrix} 1 & 4 & 3 \\ q^3 & 4q^3 & 3q^3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 64q \end{bmatrix}.$$

In a one-step elimination, we get for the augmented matrix $[A \mid b]$:

$$\begin{bmatrix} 1 & 4 & 3 & 1 \\ 0 & 0 & 0 & 64q - q^3 \end{bmatrix}$$

The equation $0 = 64q - q^3 = q(64 - q^2)$ holds if either q = 0 or $64 - q^2 = 0$, so:

Only consistent when either
$$q = 0$$
, $q = -8$ or $q = 8$.

- 6. A permutation matrix P comes from permuting the rows of the identity matrix I_n . If the entries of P are labelled p_{ij} , the matrix A having entries $a_{ij} = p_{ji}$ is the transpose, $A = P^T$.
 - (a) Is P invertible, and if yes why? How would we proceed in Gaussian elimination on P?
 - (b) Explain why the product $C = PP^T$ is the identity matrix. Think about where the 1's and 0's are.
 - (c) Since the answer to (a) was "yes", what is the inverse to P?

Solution:

- (a) Yes. To proceed we would swap all rows back in their correct place and obtain the identity. Hence P is invertible.
- (b) Look at the entry c_{ij} in C, which is the dot product of the i'th row in P and the j'th column of P^T , the latter of which is simply the j'th row of P. For the identity matrix, each row dotted with itself gives 1, while no two (different) rows have a non-zero dot product these properties are not changed when we swap the rows, so c_{ij} is 1 when i = j, and zero whenever $i \neq j$. So, we see C = I.
- (c) Using (b), we see $P^{-1} = P^T$.

Note: This exercise says a permutation matrix is orthogonal: $PP^T = P^TP = I$.

- 7. (a) Give examples of non-zero (meaning: not all entries zero) 2×2 and 4×4 matrices A, one of each, such that $A^2 = O$ (recall O means the zero matrix). <u>Hint:</u> You only need to use one 1, and the rest of the entries can be 0's!
 - (b) Are there any invertible $n \times n$ matrices A such that $A^2 = O$?

Solution:

- (a) In both cases, putting a 1 in the top right corner and the rest of the entries to 0 works.
- (b) No. Since then $A = A^{-1}A^2 = A^{-1}O = O$.
- 8. Given the three vectors $\mathbf{a}_1 = (1,2,3)$, $\mathbf{a}_2 = (1,0,-1)$ and $\mathbf{a}_3 = (0,0,1)$, find (if possible) numbers x_1, x_2 and x_3 such that:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Your solution should involve Gaussian elimination on $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ (the matrix with \mathbf{a}_i 's as columns).

Solution:

The answer is:
$$x_1 = 1/2$$
, $x_2 = 1/2$ and $x_3 = 0$.

9. (a) Using MATLAB, perform the matrix products A^2 , A^3 and A^6 of the following lower-triangular matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 7 & 2 & 0 & 0 \\ 5 & 1 & 3 & 0 \\ 3 & 2 & -1 & 4 \end{bmatrix}$$

- (b) Explain the rule for diagonal entries of A^k , for a lower-triangular matrix A.
- (c) Guess a rule for the (2,1) entry of A^k , for a lower-triangular matrix A. Solution:
- (a) The MATLAB output looks like this:

ans =

ans =

ans =

1	0	0	0
441	64	0	0
3927	665	729	0
5754	2681	-3367	4096

(b) For a lower-triangular (or upper-) matrix A, the rule

$$(A^k)_{ii} = (a_{ii})^k$$

holds.

(c) Deriving is maybe better than guessing? Let us for brevity write $b_k = (A^k)_{21}$. Hence $b_1 = a_{21}$. Since $A^k = AA^{k-1}$ we compute that:

$$b_k = (A^k)_{21} = a_{21}a_{11}^{k-1} + a_{22}(A^{k-1})_{21} = b_1a_{11}^{k-1} + a_{22}b_{k-1}.$$

Baby case. If we had $a_{22} = 1$, we could more easily see what would happen:

$$b_k = b_{k-1} + b_1 a_{11}^{k-1}.$$

Thus we have $b_3 = b_2 + b_1 a_{11}^2 = b_1 + b_1 a_{11} + b_1 a_{11}^2$ and so on, leading to:

$$(A^k)_{21} = b_k = b_1 \sum_{s=0}^{k-1} a_{11}^s = b_1 \frac{1 - a_{11}^k}{1 - a_{11}} = a_{21} \frac{1 - a_{11}^k}{1 - a_{11}}.$$

In the second-to-last equality we used the sum formula for a finite geometric series, valid when $a_{11} \neq 1$ (we leave the case $a_{11} = 1$ to the reader!).

General case. Note that we can reduce to the special case by scaling: We let $C = \frac{1}{a_{22}}A$ (and leave the special case $a_{22} = 0$ to the reader!). Then, using our formula above (that works since $c_{21} = 1$) we see:

$$(A^k)_{21} = a_{22}^k (C^k)_{21} = a_{22}^k c_{21} \frac{1 - c_{11}^k}{1 - c_{11}} = a_{22}^{k-1} a_{21} \frac{1 - (\frac{a_{11}}{a_{22}})^k}{1 - \frac{a_{11}}{a_{22}}}.$$

Thus, we finally see:

$$(A^k)_{21} = a_{21} \frac{a_{22}^k - a_{11}^k}{a_{22} - a_{11}}$$
 (when $a_{11} \neq a_{22}$)

CHECK: For example, in the above MATLAB output,

$$(A^6)_{21} = 7\frac{2^6 - 1^6}{2 - 1} = 441.$$
 \checkmark

- 10. A chemistry professor claimed on live TV that he could, by mixing, obtain any wine with given contents of water (W), sugar (S) and tannic acid (T), labelled by vectors w = (W, S, T) such that W + S + T = 100%. Due to a lack of research funding, his stock was quite limited:
 - Laboratory water supply: $w_1 = (100, 0, 0)$.
 - Budget wine: $w_2 = (50, 0, 50)$.
 - Plum tea concentrate: $w_3 = (30, 50, 20)$.
 - (a) If a Chateaux Bordeaux 1915 has (W, S, T) = (45, 50, 5), why was the professor not able to obtain this wine by mixing w_1, w_2, w_3 ? Explain by computing the mixing ratios needed (by MATLAB or by hand).
 - (b) Help the professor restore honor, by adding any new wine w_4 that will enable him to make the Chateaux Bordeaux 1915 (a Chateaux Bordeaux 1915 not allowed!).

(c) Are the mixing ratios unique after addition of the fourth wine?

Solution:

- (a) The result is (W, S, T) = (3/10, -3/10, 1). Since you would need to be able to *subtract* an amount of *Plum tea concentrate*, which is physically intractable, there is no mixing that will work.
- (b) We can for example pick $w_4 = (40, 60, 0)$ (note that it sums to 100%, hence is an admissible wine).

The wine matrix $A = \begin{bmatrix} w_1 & w_2 & w_3 & w_4 \end{bmatrix}$ then reads:

$$A = \begin{bmatrix} 100 & 50 & 30 & 40 \\ 0 & 0 & 50 & 60 \\ 0 & 50 & 20 & 0 \end{bmatrix}.$$

But we can now also forget entirely about, say, the second wine w_2 (see the Figure 1 on the last page of these solutions), and consider instead the square matrix $A_2 = [w_1 \quad w_3 \quad w_4]$ which is:

$$A_2 = \begin{bmatrix} 100 & 30 & 40 \\ 0 & 50 & 60 \\ 0 & 20 & 0 \end{bmatrix}.$$

Using Gauss elimination on $[A_2 \mid \mathbf{b}]$ to solve $A_2\mathbf{x}_2 = \mathbf{b}$, where $\mathbf{b} = (45, 50, 5)$, we find:

$$\mathbf{x}_2 = \begin{bmatrix} 1/8\\1/4\\5/8 \end{bmatrix}.$$

Note that all the solution's entries automatically sum to 1.

(c) No - in this situation, $A\mathbf{x} = \mathbf{b}$ will have infinitely many solutions, and also infinitely many solutions that are admissible (i.e. have positive entries). Later, after a few more weeks of 18.06, you will know how to obtain the complete solution to $A\mathbf{x} = \mathbf{b}$. We record it here for insight, and later reference:

$$\mathbf{x} = \begin{bmatrix} 1/8 \\ 0 \\ 1/4 \\ 5/8 \end{bmatrix} + s \begin{bmatrix} -7/12 \\ 1 \\ -5/2 \\ 25/12 \end{bmatrix}, \quad s \in \mathbb{R}.$$

Note that all these sum to 100%. Here we can in fact pick any s in the interval $s \in [0, 3/14]$ and still have non-negative entries in \mathbf{x} .

6

Figure 1: Problem 10. The grey and salmon-colored triangles are subsets of the plane x + y + z = 100 (i.e. admissible wines) with only positive mixing amounts of the w_i 's.