
18.06 Spring 2012 – Problem Set 1 - Solutions

This problem set is due Thursday, February 16th, 2012 at 4pm (hand in to Room 2-
106). The textbook problems are out of the 4th edition. For computational problems,
please include a printout of the code with the problem set (for MATLAB in particular,
diary(’filename’) will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

1. Do Problem 8 from Section 1.3.

Solution to 1.3.8 :

x1 − 0 = b1 x1 = b1

x2 − x1 = b2 x2 = b1 + b2

x3 − x2 = b3 x3 = b1 + b2 + b3

x4 − x3 = b4 x4 = b1 + b2 + b3 + b4
x1
x2
x3
x4

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1



b1
b2
b3
b4

 = A−1b

2. Do Problem 8 & Problem 32 from Section 2.2.

Solution to 2.2.8 :

If k = 3, then elimination must fail: No solution. If k = −3, elimination gives 0 = 0
in equation 2: Infinitely many solutions. If k = 0 a row exchange is needed: Exactly
one solution.

Solution to 2.2.32 :

The question deals with 100 equations Ax = 0 when A is singular.

(a) Some linear combination of the 100 rows is the row of 100 zeros.

(b) Some linear combination of the 100 columns is the column of zeros.

(c) A very singular matrix has all ones: A = eye(100). A better example has 99
random rows (or the numbers 1i, . . . , 100i in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination of those rows with no
zeros).

(d) The row picture has 100 planes meeting along a common line through 0. The
column picture has 100 vectors all in the same 99-dimensional hyperplane.

3. Do Problem 22 from Section 2.3.

Solution to 2.3.22:

(a)
∑

a3jxj .

(b) a21 − a11.
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(c) a21 − 2a11.
(d) (EAx)1 = (Ax)1 =

∑
j a1jxj .

4. Do Problem 19 & Problem 36 from Section 2.4.

Solution to 2.4.19:

(a) a11.
(b) l31 = a31/a11.

(c) a32 −
(
a31
a11

)
a12.

(d) a22 −
(
a21
a11

)
a12.

Solution to 2.4.36:

Multiplying AB = (m by n)(n by p) needs mnp multiplications. Then (AB)C needs
mpq more. Multiply BC = (n by p)(p by q) needs npq and then A(BC) needs mnq.

(a) If m,n, p, q are 2, 4, 7, 10 we compare (2)(4)(7)+(2)(7)(10) = 196 with the larger
number (2)(4)(10)+(4)(7)(10) = 360. So AB first is better, so that we multiply
that 7 by 10 matrix by as few rows as possible.

(b) If u, v, w are N by 1, then (uT v)wT needs 2N multiplications but uT (vwT ) needs
N2 to find vwT and N2 more to multiply by the row vector uT . Apologies to
use the transpose symbol so early.

(c) We are comparing mnp+mpq with mnq + npq. Divide all terms by mnpq:
Now we are comparing q−1+n−1 with p−1+m−1. This yields a simple important
rule. If matrices A and B are multiplying v for ABv, don’t multiply the matrices
first.

5. For which values of q (if any) is the following system consistent (= solvable)?

x+ 4y + 3z = 1,

q3x+ 4q3y + 3q3z = 64q.

Solution: We write the system as a matrix equation[
1 4 3
q3 4q3 3q3

]xy
z

 =

[
1
64q

]
.

In a one-step elimination, we get for the augmented matrix [A | b]:[
1 4 3 1
0 0 0 64q − q3

]
The equation 0 = 64q − q3 = q(64− q2) holds if either q = 0 or 64− q2 = 0, so:

Only consistent when either q = 0, q = −8 or q = 8.
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6. A permutation matrix P comes from permuting the rows of the identity matrix In. If
the entries of P are labelled pij , the matrix A having entries aij = pji is the transpose,
A = P T .

(a) Is P invertible, and if yes why? How would we proceed in Gaussian elimination
on P?

(b) Explain why the product C = PP T is the identity matrix. Think about where
the 1’s and 0’s are.

(c) Since the answer to (a) was "yes", what is the inverse to P?

Solution:

(a) Yes. To proceed we would swap all rows back in their correct place and obtain
the identity. Hence P is invertible.

(b) Look at the entry cij in C, which is the dot product of the i’th row in P and
the j’th column of P T , the latter of which is simply the j’th row of P .
For the identity matrix, each row dotted with itself gives 1, while no two (differ-
ent) rows have a non-zero dot product - these properties are not changed when
we swap the rows, so cij is 1 when i = j, and zero whenever i 6= j. So, we see
C = I.

(c) Using (b), we see P−1 = P T .

Note: This exercise says a permutation matrix is orthogonal : PP T = P TP = I.

7. (a) Give examples of non-zero (meaning: not all entries zero) 2×2 and 4×4 matrices
A, one of each, such that A2 = O (recall O means the zero matrix). Hint: You
only need to use one 1, and the rest of the entries can be 0’s!

(b) Are there any invertible n× n matrices A such that A2 = O?

Solution:

(a) In both cases, putting a 1 in the top right corner and the rest of the entries to
0 works.

(b) No. Since then A = A−1A2 = A−1O = O.

8. Given the three vectors a1 = (1, 2, 3), a2 = (1, 0,−1) and a3 = (0, 0, 1), find (if
possible) numbers x1, x2 and x3 such that:

x1a1 + x2a2 + x3a3 =

11
1

 .

Your solution should involve Gaussian elimination on A =
[
a1 a2 a3

]
(the matrix

with ai’s as columns).

Solution:

The answer is: x1 = 1/2, x2 = 1/2 and x3 = 0.
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9. (a) Using MATLAB, perform the matrix products A2, A3 and A6 of the following
lower-triangular matrix:

A =


1 0 0 0
7 2 0 0
5 1 3 0
3 2 −1 4


(b) Explain the rule for diagonal entries of Ak, for a lower-triangular matrix A.

(c) Guess a rule for the (2, 1) entry of Ak, for a lower-triangular matrix A.

Solution:

(a) The MATLAB output looks like this:

>> A^2

ans =

1 0 0 0
21 4 0 0
27 5 9 0
24 11 -7 16

>> A^3

ans =

1 0 0 0
49 8 0 0

107 19 27 0
114 47 -37 64

>> A^6

ans =

1 0 0 0
441 64 0 0

3927 665 729 0
5754 2681 -3367 4096

(b) For a lower-triangular (or upper-) matrix A, the rule

(Ak)ii = (aii)
k

holds.
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(c) Deriving is maybe better than guessing? Let us for brevity write bk = (Ak)21.
Hence b1 = a21. Since Ak = AAk−1 we compute that:

bk = (Ak)21 = a21a
k−1
11 + a22(A

k−1)21 = b1a
k−1
11 + a22bk−1.

Baby case. If we had a22 = 1, we could more easily see what would happen:

bk = bk−1 + b1a
k−1
11 .

Thus we have b3 = b2 + b1a
2
11 = b1 + b1a11 + b1a

2
11 and so on, leading to:

(Ak)21 = bk = b1

k−1∑
s=0

as11 = b1
1− ak11
1− a11

= a21
1− ak11
1− a11

.

In the second-to-last equality we used the sum formula for a finite geometric
series, valid when a11 6= 1 (we leave the case a11 = 1 to the reader!).
General case. Note that we can reduce to the special case by scaling: We let
C = 1

a22
A (and leave the special case a22 = 0 to the reader!). Then, using our

formula above (that works since c21 = 1) we see:

(Ak)21 = ak22(C
k)21 = ak22c21

1− ck11
1− c11

= ak−1
22 a21

1− (a11a22
)k

1− a11
a22

.

Thus, we finally see:

(Ak)21 = a21
ak22 − ak11
a22 − a11

(when a11 6= a22)

CHECK: For example, in the above MATLAB output,

(A6)21 = 7
26 − 16

2− 1
= 441. X

10. A chemistry professor claimed on live TV that he could, by mixing, obtain any wine
with given contents of water (W), sugar (S) and tannic acid (T), labelled by vectors
w = (W,S, T ) such that W + S + T = 100%. Due to a lack of research funding, his
stock was quite limited:

- Laboratory water supply: w1 = (100, 0, 0).

- Budget wine: w2 = (50, 0, 50).

- Plum tea concentrate: w3 = (30, 50, 20).

(a) If a Chateaux Bordeaux 1915 has (W,S, T ) = (45, 50, 5), why was the professor
not able to obtain this wine by mixing w1, w2, w3? Explain by computing the
mixing ratios needed (by MATLAB or by hand).

(b) Help the professor restore honor, by adding any new wine w4 that will enable him
to make the Chateaux Bordeaux 1915 (a Chateaux Bordeaux 1915 not allowed!).
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(c) Are the mixing ratios unique after addition of the fourth wine?

Solution:

(a) The result is (W,S, T ) = (3/10,−3/10, 1). Since you would need to be able
to subtract an amount of Plum tea concentrate, which is physically intractable,
there is no mixing that will work.

(b) We can for example pick w4 = (40, 60, 0) (note that it sums to 100%, hence is
an admissible wine).
The wine matrix A = [w1 w2 w3 w4] then reads:

A =

100 50 30 40
0 0 50 60
0 50 20 0

 .

But we can now also forget entirely about, say, the second wine w2 (see the
Figure 1 on the last page of these solutions), and consider instead the square
matrix A2 = [w1 w3 w4] which is:

A2 =

100 30 40
0 50 60
0 20 0

 .

Using Gauss elimination on [A2 | b] to solve A2x2 = b, where b = (45, 50, 5),
we find:

x2 =

1/81/4
5/8

 .

Note that all the solution’s entries automatically sum to 1.

(c) No - in this situation, Ax = b will have infinitely many solutions, and also
infinitely many solutions that are admissible (i.e. have positive entries).
Later, after a few more weeks of 18.06, you will know how to obtain the complete
solution to Ax = b. We record it here for insight, and later reference:

x =


1/8
0

1/4
5/8

+ s


−7/12

1
−5/2
25/12

 , s ∈ R.

Note that all these sum to 100%. Here we can in fact pick any s in the interval
s ∈ [0, 3/14] and still have non-negative entries in x.
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Figure 1: Problem 10. The grey and salmon-colored triangles are subsets of the plane
x+ y + z = 100 (i.e. admissible wines) with only positive mixing amounts of the wi’s.
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