18.06 Spring 2012 – Problem Set 1

This problem set is due Thursday, February 16th, 2012 at 4pm (hand in to Room 2-106). The textbook problems are out of the 4th edition. For computational problems, please include a printout of the code with the problem set (for MATLAB in particular, diary ("filename") will start a transcript session, diary off will end one.)

Every problem is worth 10 points.

- 1. Do Problem 8 from Section 1.3.
- 2. Do Problem 8 & Problem 32 from Section 2.2.
- 3. Do Problem 22 from Section 2.3.
- 4. Do Problem 19 & Problem 36 from Section 2.4.
- 5. For which values of q (if any) is the following system consistent (= solvable)?

$$x + 4y + 3z = 1,$$
$$q^3x + 4q^3y + 3q^3z = 64q.$$

- 6. A permutation matrix P comes from permuting the rows of the identity matrix I_n . If the entries of P are labelled p_{ij} , the matrix A having entries $a_{ij} = p_{ji}$ is the transpose, $A = P^T$.
 - (a) Is P invertible, and if yes why? How would we proceed in Gaussian elimination on P?
 - (b) Explain why the product $C = PP^T$ is the identity matrix. Think about where the 1's and 0's are.
 - (c) Since the answer to (a) was "yes", what is the inverse to P?
- 7. (a) Give examples of non-zero (meaning: not all entries zero) 2×2 and 4×4 matrices A, one of each, such that $A^2 = O$ (recall O means the zero matrix). Hint: You only need to use one 1, and the rest of the entries can be 0's!
 - (b) Are there any invertible $n \times n$ matrices A such that $A^2 = O$?
- 8. Given the three vectors $\mathbf{a}_1 = (1,2,3)$, $\mathbf{a}_2 = (1,0,-1)$ and $\mathbf{a}_3 = (0,0,1)$, find (if possible) numbers x_1, x_2 and x_3 such that:

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Your solution should involve Gaussian elimination on $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ (the matrix with \mathbf{a}_i 's as columns).

9. (a) Using MATLAB, perform the matrix products A^2 , A^3 and A^6 of the following lower-triangular matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 7 & 2 & 0 & 0 \\ 5 & 1 & 3 & 0 \\ 3 & 2 & -1 & 4 \end{bmatrix}$$

- (b) Explain the rule for diagonal entries of A^k , for a lower-triangular matrix A.
- (c) Guess a rule for the (2,1) entry of A^k , for a lower-triangular matrix A.
- 10. A chemistry professor claimed on live TV that he could, by mixing, obtain any wine with given contents of water (W), sugar (S) and tannic acid (T), labelled by vectors w = (W, S, T) such that W + S + T = 100%. Due to a lack of research funding, his stock was quite limited:
 - Laboratory water supply: $w_1 = (100, 0, 0)$.
 - Budget wine: $w_2 = (50, 0, 50)$.
 - Plum tea concentrate: $w_3 = (30, 50, 20)$.
 - (a) If a Chateaux Bordeaux 1915 has (W, S, T) = (45, 50, 5), why was the professor not able to obtain this wine by mixing w_1, w_2, w_3 ? Explain by computing the mixing ratios needed (by MATLAB or by hand).
 - (b) Help the professor restore honor, by adding any new wine w_4 that will enable him to make the Chateaux Bordeaux 1915 (a Chateaux Bordeaux 1915 not allowed!).
 - (c) Are the mixing ratios unique after addition of the fourth wine?