
18.06 Professor Strang Final Exam May 23rd, 2012
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Your PRINTED name is:

r01 T 11 4-159 Ailsa Keating ailsa

r02 T 11 36-153 Rune Haugseng haugseng

r03 T 12 4-159 Jennifer Park jmypark

r04 T 12 36-153 Rune Haugseng haugseng

r05 T 1 4-153 Dimiter Ostrev ostrev

r06 T 1 4-159 Uhi Rinn Suh ursuh

r07 T 1 66-144 Ailsa Keating ailsa

r08 T 2 66-144 Niels Martin Moller moller

r09 T 2 4-153 Dimiter Ostrev ostrev

r10 ESG Gabrielle Stoy gstoy



1 (12 pts.)

(a) - Find the eigenvalues and eigenvectors of A.

A =


3 1 4

0 1 5

0 1 5



(b) - Write the vector v =


1

1

1

 as a linear combination of eigenvectors of A.

- Find the vector A10v.
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(c) If you solve du
dt

= −Au (notice the minus sign), with u(0) a given vector, then as t→∞

the solution u(t) will always approach a multiple of a certain vector w.

- Find this steady-state vector w.
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2 (12 pts.)

Suppose A has rank 1, and B has rank 2 (A and B are both 3× 3 matrices).

(a) - What are the possible ranks of A+B?

(b) - Give an example of each possibility you had in (a).

Page 4 of 20



(c) - What are the possible ranks of AB?

- Give an example of each possibility.
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3 (12 pts.)

(a) - Find the three pivots and the determinant of A.

A =


1 0 −1

0 1 1

−1 1 0


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(b) - The rank of A− I is , so that λ = is an eigenvalue.

- The remaining two eigenvalues of A are λ = .

- These eigenvalues are all , because AT = A.
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(c) The unit eigenvectors x1,x2,x3 will be orthonormal.

- Prove that:

A = λ1x1x
T
1 + λ2x2x

T
2 + λ3x3x

T
3 .

You may compute the xi’s and use numbers. Or, without numbers, you may show that

the right side has the correct eigenvectors x1,x2,x3 with eigenvalues λ1, λ2, λ3.
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4 (12 pts.)

This problem is about x+ 2y + 2z = 0, which is the equation of a plane through 0 in R3.

(a) - That plane is the nullspace of what matrix A?

A =

- Find an orthonormal basis for that nullspace (that plane).
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(b) That plane is the column space of many matrices B.

- Give two examples of B.

(c) - How would you compute the projection matrix P onto that plane? (A formula is

enough)

- What is the rank of P?
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5 (12 pts.)

Suppose v is any unit vector in R3. This question is about the matrix H.

H = I − 2vvT .

(a) - Multiply H times H to show that H2 = I.

(b) - Show that H passes the tests for being a symmetric matrix and an orthogonal matrix.
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(c) - What are the eigenvalues of H?

You have enough information to answer for any unit vector v, but you can choose one v

and compute the λ’s.
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6 (12 pts.)

(a) - Find the closest straight line y = Ct+D to the 5 points:

(t, y) = (−2, 0), (−1, 0), (0, 1), (1, 1), (2, 1).
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(b) - The word "closest" means that you minimized which quantity to find your line?

(c) - If ATA is invertible, what do you know about its eigenvalues and eigenvectors? (Tech-

nical point: Assume that the eigenvalues are distinct – no eigenvalues are repeated).
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7 (12 pts.)

This symmetric Hadamard matrix has orthogonal columns:

H =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 , and H2 = 4I.

(a) What is the determinant of H?

(b) What are the eigenvalues of H? (Use H2 = 4I and the trace of H).
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(c) What are the singular values of H?
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8 (16 pts.)

In this TRUE/FALSE problem, you should circle your answer to each question.

(a) Suppose you have 101 vectors v1,v2, . . . ,v101 ∈ R100.

- Each vi is a combination of the other 100 vectors: TRUE – FALSE

- Three of the vi’s are in the same 2-dimensional plane: TRUE – FALSE

(b) Suppose a matrix A has repeated eigenvalues 7, 7, 7, so det(A− λI) = (7− λ)3.

- Then A certainly cannot be diagonalized (A = SΛS−1): TRUE – FALSE

- The Jordan form of A must be J =


7 1 0

0 7 1

0 0 7

: TRUE – FALSE

(c) Suppose A and B are 3× 5.

- Then rank(A+B) ≤ rank(A) + rank(B): TRUE – FALSE

(d) Suppose A and B are 4× 4.

- Then det(A+B) ≤ det(A) + det(B): TRUE – FALSE

(e) Suppose u and v are orthonormal, and call the vector b = 3u + v. Take V to be the

line of all multiples of u + v.

- The orthogonal projection of b onto V is 2u + 2v: TRUE – FALSE

(f) Consider the transformation T (x) =
∫ x

−x
f(t)dt, for a fixed function f . The input is x,

the output is T (x).

- Then T is always a linear transformation: TRUE – FALSE
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This is the end of 18.06. Hope you enjoyed learning Linear Algebra!
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