
18.06 Pset 9 Solutions

Problem 6.5, #25: With positive pivots in D, the factorization A = LDLT

becomes L
√
D
√
DLT. (Square roots of the pivots give D =

√
D
√
D.) Then C =√

DLT yields the Cholesky factorization A = CTC which is “symmetrized LU”.

From C =

[
3 1
0 2

]
find A. From A =

[
4 8
8 25

]
find C = chol(A).

Solution (4 points) From C, we obtain

A = CTC =

[
3 0
1 2

] [
3 1
0 2

]
=

[
9 3
3 5

]
.

Conversely, the given A quickly diagonalizes to

[
4 0
0 9

]
via L =

[
1 0
2 1

]
: thus

C = chol(A) =
√
DLT =

[
2 4
0 3

]
.

Problem 6.5, #26: In the Cholesky factorization A = CTC, with CT = L
√
D,

the square roots of the pivots are on the diagonal of C. Find C (upper triangular)
for

A =

 9 0 0
0 1 2
0 2 8

 and A =

 1 1 1
1 2 2
1 2 7


.

Solution (4 points) For the first matrix A, we have

A =

 1 0 0
0 1 0
0 2 1

 9 0 0
0 1 0
0 0 4

 1 0 0
0 1 2
0 0 1

⇒ C =

 3 0 0
0 1 0
0 2 2


while for the second matrix we have

A =

 1 0 0
1 1 0
1 1 1

 1 0 0
0 1 0
0 0 5

 1 1 1
0 1 1
0 0 1

⇒ C =

 1 1 1
0 1 1

0 0
√

5


1
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Problem 6.5, #27: The symmetric factorization A = LDLT means that xTAx =
xTLDLTx:[
x y

] [ a b
c d

] [
x
y

]
=
[
x y

] [ 1 0
b/a 1

] [
a 0
0 (ac− b2)/a

] [
1 b/a
0 1

] [
x
y

]
The left side is ax2 + 2bxy + cy2. The right side is a(x + b

a
y)2 + y2. The second

pivot completes the square! Test with a = 2, b = 4, c = 10.

Solution (4 points) Evaluating out the right side gives ax2 + 2bxy + cy2, so the

entry in the space given is c − b2

a
, i.e. the second pivot. For the given values, we

have 2x2 + 8xy + 10y2 = 2(x+ 2y)2 + 2y2 as desired.

Problem 6.5, #29: For F1(x, y) = x4/4+x2 +x2y+y2 and F2(x, y) = x3 +xy−x,
find the second-derivative matrices H1 and H2:

H =

(
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂y∂x

∂2F
∂y2

)
.

H1 is positive-definite so F1 is concave up (= convex). Find the minimum point of
F1 and the the saddle point of F2 (look only where the first derivatives are zero).

Solution (4 points) For F1(x, y), we first solve for the stationary point

∂F1

∂x
= x3 + 2x+ 2xy = 0,

∂F1

∂y
= x2 + 2y = 0

From (2), we have y = −x2/2. Plug this into (1), we have 2x = 0 and hence the
only critical point is x = y = 0. At this point,

H1 =

(
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂y∂x

∂2F
∂y2

)
=

(
3x3 + 2 + 2y 2x

2x 2

)
=

(
2 0
0 2

)
.

It is positive definite and hence (0, 0) is a minimal point of F1(x, y).

REMARK: The problem for F1 = x4/4 + x2y + y2 as originally stated, you get
a curve of minima x2 + 2y = 0, and H1 is only positive semidefinite.

For F2(x, y), we first solve for the stationary point

∂F2

∂x
= 3x2 + y − 1 = 0,

∂F2

∂y
= x = 0

This implies that y = 1. At this point (0, 1),

H2 =

(
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂y∂x

∂2F
∂y2

)
=

(
6x 1
1 0

)
=

(
0 1
1 0

)
.
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The eigenvalues of H2 at (0, 1) is the solution to det (H2 − λI) = λ2 − 1, which are
λ1 = 1 and λ2 = −1. They are with opposite signs and hence (0, 1) is a saddle point
of F2(x, y).

Problem 6.5, #32: A group of nonsingular matrices include AB and A−1 if it
includes A and B. “Products and inverses stay in the group.” Which of these are
groups (as in 2.7.37)? Invent a “subgroup” of two of these groups (not I by itself =
the smallest group).

(a) Positive definite symmetric matrices A.
(b) Orthogonal matrices Q.
(c) All exponentials etA of a fixed matrix A.
(d) Matrices P with positive eigenvalues.
(e) Matrices D with determinant 1.

Solution (12 points) First, note that all but the first and fourth are groups (assum-

ing we are only referring to square matrices in (b)): on the other hand,

[
1 2
2 3

]
and

[
1 2
2 4

]
are both positive definite and symmetric, but their product is not

symmetric. Intersections of these groups give the simplest examples of subgroups
(for instance, orthogonal matrices with determinant 1, called the special orthogonal
matrices), though there are many others.

Problem 6.5, #33: When A and B are symmetric positive definite, AB might
not even be symmetric. But its eigenvalues are still positive. Start from ABx = λx
and take dot products with Bx. Then prove λ > 0.

Solution (12 points) Taking dot products, we get (ABx)TBx = (Bx)TA(Bx) on
the left and (λx)TBx = λxTBx. Since B is positive definite, xTBx > 0, and since
A is positive definite, (Bx)TA(Bx) is too (Bx is just another vector). Thus, λ must
be positive as well.

Problem 6.5, #34: Write down the 5 by 5 sine matrix S from Worked Example
6.5 D, containing the eigenvectors of K when n = 5 and h = 1/6. Multiply K times
S to see the five positive eigenvalues.

Their sum should equal the trace 10. Their product should be det K = 6.
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Solution (12 points) S is the matrix

S =


1/2

√
3/2 1

√
3/2 1/2√

3/2
√

3/2 0 −
√

3/2 −
√

3/2
1 0 −1 0 1√
3/2 −

√
3/2

√
3/2 −

√
3/2

√
3/2

1/2 −
√

3/2 1 −
√

3/2 1/2


The five eigenvalues (corresponding to the columns) are 2−

√
3, 1, 2, 3, and 2 +

√
3,

which add up to 10 and multiply to 6 as desired.

Problem 6.5, #35: If A has full column rank, and C is positive-definite, show
that ATCA is positive definite.

Solution (12 points) Since C is positive-definite, yTCy > 0 for any y 6= 0 in Rn.
Now, we need to show that zTATCAz > 0 for any z 6= 0 in Rn. We can rewrite
it as zTATCAz = (Az)TC(Az). Since A has full column rank, N(A) = {0} and in
particular, Az 6= 0 in Rn. Therefore, we have (Az)TC(Az) > 0. This implies that
ATCA is positive definite.

Problem 8.1, #3: In the free-free case when ATCA in equation (9) is singular,
add the three equations ATCAu = f to show that we need f1 + f2 + f3 = 0. Find a
solution to ATCAu = f when the forces f = (−1, 0, 1) balance themselves. Find all
solutions!

Solution (4 points) Dot producting our formula with (1, 1, 1) gives

[
1 1 1

]  c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

 u1
u2
u3

 =
[

1 1 1
]  f1

f2
f3


0 = f1 + f2 + f3

Substituting f = (−1, 0, 1) gives the two equations c2(u1−u2) = −1, c3(u3−u2) = 1
(the middle equation is redundant), with a solution (−c−1

2 , 0, c−1
3 ). All other solutions

are given by adding multiples of (1, 1, 1), which spans the nullspace.

Problem 8.1, #5: In the fixed-free problem, the matrix A is square and invertible.
We can solve ATy = f separately from Au = e. Do the same for the differential
equation:

Solve − dy

dx
= f(x) with y(1) = 0. Graph y(x) if f(x) = 1.
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Solution (4 points) y(x) = −
∫ x

1
f(x)dx and if f(x) = 1 then y(x) = 1 − x. You

can graph this.

Problem 8.1, #7: For five springs and four masses with both ends fixed, what are
the matrices A and C and K? With C = I solve Ku = ones(4).

Solution (4 points) The matrices are

A =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

 , C =


c1

c2
c3

c4
c5

 ,

K =


c1 + c2 −c2 0 0
−c2 c2 + c3 −c3 0

0 −c3 c3 + c4 −c4
0 0 −c4 c4 + c5


Inverting K for c1 = · · · = c5 = 1 gives

K−1 =
1

5


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4


Multiplying by (1, 1, 1, 1) gives (2, 3, 3, 2).

Problem 8.1, #10: (MATLAB) Find the displacements u(1), . . . , u(100) of 100
masses connected by springs all with c = 1. Each force is f(i) = 0.01. Print graphs
of u with fixed-fixed and fixed-free ends. Note that diag(ones(n, 1), d) is a matrix
with n ones along the diagonal d. This print command will graph a vector u:

plot(u, ‘+’); xlabel(‘mass number’); ylabel(‘movement’); print

Solution (12 points)

>> E = diag(ones(99,1),1);

>> K = 2*eye(100)-E-E’;

>> f = 0.01*ones(100, 1); u = K\f;

>> plot(u,’+’); xlabel(’mass number’); ylabel(’movement’); print

>> K(100,100) = 1; u = K\f;

>> plot(u,’+’); xlabel(’mass number’); ylabel(’movement’); print



6

Figure 1. Fixed-fixed

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

mass number

m
ov

em
en

t

Problem 8.1, #11: (MATLAB) Chemical engineering has a first derivative of
du/dx from fluid velocity as well as d2u/dx2 from diffusion. Replace du/dx by
a forward difference, then a centered difference, then a backward difference, with
∇x = 1

8
. Graph your numerical solutions of

−d
2u

dx2
+ 10

du

dx
= 1 with u(0) = u(1) = 0.

Solution (12 points)

>> E = diag(ones(6,1),1);

>> K = 64*(2*eye(7) - E - E’);

>> D = 80*(-eye(7)+E);
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Figure 2. Fixed-free
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>> forward = (K+D)\\ones(7,1)

forward =

0.0125

0.0250

0.0376

0.0496

0.0641

0.0688

0.1125
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>> backward = (K-D)\\ones(7,1)

backward =

0.0431

0.0554

0.0539

0.0462

0.0359

0.0244

0.0123

>> centered = (K+D/2-D’/2)\\ones(7,1)

centered =

0.0125

0.0250

0.0374

0.0497

0.0613

0.0697

0.0644

>> plot(n,forward(n),n,backward(n),n,centered(n))
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Figure 3. Overlayed numerical solutions
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