
18.06 Problem Set 10 Solution
Due Thursday, 29 April 2009 at 4 pm in 2-106.

Total: 100 points

Section 6.6. Problem 12. These Jordan matrices have eigenvalues 0, 0, 0, 0. They
have two eigenvectors (one from each block). But the block sizes don’t match and
they are not similar:

J =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and K =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


For any matrix M , compare JM with MK. If they are equal show that M is not
invertible. Then M−1JM = K is impossible; J is not similar to K.

Solution (4 points) Let M = (mij). Then

JM =


m21 m22 m23 m24

0 0 0 0
m41 m42 m43 m44

0 0 0 0

 and MK =


0 m11 m12 0
0 m21 m22 0
0 m31 m32 0
0 m41 m42 0

 .

If JM = MK then

m21 = m22 = m24 = m41 = m42 = m44 = 0,

which in particular means that the second row is either a multiple of the fourth row,
or the fourth row is all 0’s. In either of these cases M is not invertible.

Suppose that J were similar to K. Then there would be some invertible matrix
M such that K = M−1JM , which would mean that MK = JM . But we just
showed that in this case M is never invertible! Contradiction. Thus J is not similar
to K.

Section 6.6. Problem 14. Prove that AT is always similar to A (we know that
the λ’s are the same):

1. For one Jordan block Ji: find Mi so that M−1
i JiMi = JT

i (see example 3).

2. For any J with blocks Ji: build M0 from blocks so that M−1
0 JM0 = JT .
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3. For any A = MJM−1: Show that AT is similar to JT and so to J and so to
A.

Solution (4 points)

1. Suppose that we have one Jordan block Ji. Then
1

1
.

.
1




λ 1 0 · · · 0
λ 1 · · · 0

λ · · · 0
. . .

λ




1
1

.
.

1

 =


λ
1 λ
0 1 λ

. . .

0 0 0 · · · λ


so J is similar to JT .

2. Suppose that each Ji satisfies JT
i = M−1

i JiMi. Let M0 be the block-diagonal
matrix consisting of the Mi’s along the diagonal. Then

M−1
0 JM0 =


M−1

1

M−1
2

. . .

M−1
n




J1

J2

. . .

Jn




M1

M2

. . .

Mn



=


M−1

1 J1M1

M−1
2 J2M2

. . .

M−1
n JnMn



=


JT

1

JT
2

. . .

JT
n

 = JT

3.
AT = (MJM−1)T = (M−1)T JT MT = (MT )−1JT (MT ).

So AT is similar to JT , which is similar to J , which is similar to A. Thus any
matrix is similar to its transpose.

Section 6.6. Problem 20. Why are these statements all true?
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(a) If A is similar to B then A2 is similar to B2.

(b) A2 and B2 can be similar when A and B are not similar.

(c)

(
3 0
0 4

)
is similar to

(
3 1
0 4

)
.

(d)

(
3 0
0 3

)
is not similar to

(
3 1
0 3

)
.

(e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 the
eigenvalues stay the same. In this case M =?

Solution (4 points)

(a) If A is similar to B then we can write A = M−1BM for some M . Then
A2 = M−1B2M , so A2 is similar to B2.

(b) Let

A =

(
0 0
0 0

)
B =

(
0 1
0 0

)
.

Then A2 = B2 (so they are obviously similar) but A is not similar to B because
nothing but the zero matrix is similar to the zero matrix.

(c) (
3 0
0 4

)
=

(
1 −1
0 1

)(
3 1
0 4

)(
1 1
0 1

)
.

(d) These are not similar because the first matrix has a plane of eigenvectors for
the eigenvalue 3, while the second only has a line.

(e) In order to exchange two rows of A we multiply on the left by

M =


0 1
1 0

1
1

 .

In order to exchange two columns we multiply on the right by the same M .
As M = M−1 we see that the new matrix is similar to the old one, so the
eigenvalues stay the same.
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Section 6.6. Problem 22. If an n × n matrix A has all eigenvalues λ = 0 prove
that An is the zero matrix.

Solution (12 points) Suppose that we have a Jordan block of size i with eigenvalue
0. Then notice that J2 will have a diagonal of 1’s two diagonals above the main
diagonal and zeroes elsewhere. J3 will have a diagonal of 1’s three diagonals above
the main diagonal, and zeroes elsewhere. Therefore J i = 0, since there is no diagonal
i diagonals above the main diagonal. If A has all eigenvalues λ = 0 then then A
is similar to some matrix with Jordan blocks J1, . . . , Jk with each Ji of size ni and∑k

i=1 nk = n. Each Jordan block will have eigenvalue 0, so we know that Jni
i = 0,

and thus Jn
i = 0.

As An is similar to a block-diagonal matrix with blocks Jn
1 , Jn

2 , . . . , Jn
k and each

of these is 0 we know that An = 0.
Another way to see this is to note that if A has all eigenvalues 0 this means

that the characteristic polynomial of A must be xn, as this is the only polynomial
of degree n all of whose roots are 0. Thus An = 0 by the Cayley-Hamilton theorem.

Section 6.6. Problem 23. For the shifted QR method in the Worked Example
6.6 B, show that A2 is similar to A1. No change in eigenvalues, and the A’s quickly
approach a diagonal matrix.

Solution (12 points) We are asked to show that A2 = R1Q1 − cs2I is similar to
A1 = Q1R1 − cs2I. Note that

Q1A2Q
−1
1 = Q1(R1Q1 − cs2I)Q−1

1 = Q1R1 −Q1cs
2IQ−1

1 = Q1R1 − cs2I = A1.

Thus A2 is similar to A1, and thus their eigenvalues are the same.

Section 6.6. Problem 24. If A is similar to A−1, must all the eigenvalues equal
1 or −1?

Solution (12 points)
No. Consider: (

2 0
0 1

2

)
=

(
0 1
1 0

)−1( 1
2

0
0 2

)(
0 1
1 0

)
.

Thus

(
2 0
0 1

2

)
is similar to

(
2 0
0 1

2

)−1

.

4



Section 6.7. Problem 4. Find the eigenvalues and unit eigenvectors of AT A and

AAT . Keep each Av = σu for the Fibonacci matrix A =

(
1 1
1 0

)
. Construct the

singular value decomposition and verify that A equal sUΣV T .

Solution (4 points)

AT A =

(
2 1
1 1

)
AAT =

(
2 1
1 1

)
.

Note that these are the same. (This makes sense, as A is symmetric.) The eigenval-
ues of this are the roots of x2− 3x+1, which are (3±

√
5)/2. The unit eigenvectors

of this will be  √
2

5−
√

5√
3−
√

5
5−
√

5

 and

 √
3−
√

5
5−
√

5

−
√

2
5−
√

5

 .

Then

U =

 √
2

5−
√

5
−
√

3−
√

5
5−
√

5√
3−
√

5
5−
√

5

√
2

5−
√

5

 V =

 √
2

5−
√

5

√
3−
√

5
5−
√

5√
3−
√

5
5−
√

5
−
√

2
5−
√

5


and

Σ =

(
1+
√

5
2 √

5−1
2

)
.

Section 6.7. Problem 11. Suppose A has orthogonal columns w1, . . . , wn of
lengths σ1, . . . , σn. What are U ,Σ and V in the SVD?

Solution (4 points) We will first solve this assuming all of the wi are nonzero; at
the end we will give a modification for the solution in the case that some are 0. As
the columns of A are orthogonal we know that AT A will be a diagonal matrix with
diagonal entries σ2

1, . . . , σ
2
n. Thus U = I and Σ is the diagonal matrix with entries

σ1, . . . , σn. Then if we define V to be the matrix whose i-th row is the vector wi/σi

we will have A = UΣV T , as desired.
Suppose that some of wi are zero. Take all of the w’s that are nonzero and

complete them to an orthogonal basis u1, . . . , un satisfying the conditions that if
wi 6= 0 then ui = wi, and if wi = 0 then |ui| = 1. Then let U, Σ be as above, and V
be the matrix whose i-th row is wi/σi if σi 6= 0, and ui if σi = 0. Then A = UΣV T ,
as desired.
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Section 6.7. Problem 17. The 1,−1 first difference matrix A has AT A the second
difference matrix. The singular vectors of A are sine vectors V and cosine vectors
u. Then Av = σu is the discrete form of d/dx(sin cx) = c(cos cx). This is the best
SVD I have seen.

A =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 AT A =

 2 −1 0
−1 2 −1
0 −1 2

 .

Then the orthogonal sine matrix is

V =
1√
2

 sin π/4 sin 2π/4 sin 3π/4
sin 2π/4 sin 4π/4 sin 6π/4
sin 3π/4 sin 6π/4 sin 9π/4

 .

(a) Put numbers in V : The unit eigenvectors of AT A are singular vectors of A.
Show that the columns of V have AT Av = λv with λ = 2−

√
2, 2, 2 +

√
2.

(b) Multiply AV and verify taht its columns are orthogonal. They are σ1u1 and
σ2u2 and σ3u3. The first columns of the cosine matrix U are u1, u2, u3.

(c) Since A is 4 × 3 weneed a fourth orthogonal vector u4. It comes from the
nullspace of AT . What is u4?

Solution (12 points)

(a) We are asked to show that the columns of V are eigenvectors of AT A. The
characteristic polynomial of AT A is x3− 6x2 + 10x− 4, which can be factored
as (x− 2)(x2 − 4x + 2). By the quadratic formua the roots of this are exactly
the eigenvalues specified.

Note that

V =

 1/2 1/
√

2 1/2

1/
√

2 0 −1/
√

2

1/2 −1/
√

2 1/2

 .

Then note that the three vectors

 1√
2

1

 ,

 1
0
−1

 ,

 1

−
√

2
1

 are scalar

multiples of the columns of V , and it is easy to check that they are indeed
eigenvectors of AT A with the right eigenvalues.
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(b)

AV =
1

2


1

√
2 1√

2− 1 −
√

2 −
√

2− 1

1−
√

2 −
√

2 1 +
√

2

−1
√

2 −1

 .

It is easy to check that these columns are orthogonal.

(c) Note that AT =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

. The nullspace of this is generated by
1
1
1
1

.

Section 8.5. Problem 4. The first three Legendre polynomials are 1, x, x2 − 1/3.
Choose c so that the fourth polynomial x3 − cx is orthogonal to the first three. All
integrals go from −1 to 1.

Solution (4 points) We compute∫ 1

−1

x3− cx dx = 0

∫ 1

−1

(x3− cx)x dx =
2

5
− 2

3
c

∫ 1

−1

(x3− cx)(x2− 1

3
) dx = 0.

Thus in order for x3 − cx to be orthogonal to the other three we need c = 3/5.

Section 8.5. Problem 5. For the square wave f(x) in Example 3 show that∫ 2π

0

f(x) cos x dx = 0

∫ 2π

0

f(x) sin x dx = 4

∫ 2π

0

f(x) sin 2x dx = 0.

Which three Fourier coefficients come from those integrals?

Solution (4 points) By definition, coefficients that come from these are a1, b1, b2,
respectively. We compute∫ 2π

0

f(x) cos x dx =

∫ π

0

cos x dx−
∫ 2π

π

cos x dx = 0∫ 2π

0

f(x) sin x dx =

∫ π

0

sin x dx−
∫ 2π

π

sin x dx = 4∫ 2π

0

f(x) sin 2x dx =

∫ π

0

sin 2x dx−
∫ 2π

π

sin 2x dx = 0.
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Section 8.5. Problem 12. The functions 1, cos x, sin x, cos 2x, sin 2x, . . . are a
basis for a Hilberts space. Write the derivatives of those first five functions as
combinations of the same five functions. What is the 5× 5 “differentiation matrix”
for those functions?

Solution (12 points)
We know that 1′ = 0, and that

(cos x)′ = − sin x (sin x)′ = cos x (cos 2x)′ = −2 sin 2x (sin 2x)′ = 2 cos 2x.

Thus the “differentiation matrix” is
0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −2
0 0 0 2 0

 .

Section 8.5. Problem 13. Find the Fourier coefficients ak and bk of the square
pulse F (x) centered at x = 0: f(x) = 1/h for |x| ≤ h/2 and F (x) = 0 for h/2 <
|x| ≤ π. As h → 0, this F (x) approaches a delta function. Find the limits of ak and
bk.

Solution (12 points) We compute

a0 =
1

π

∫ π

−π

F (x) dx =
1

hπ

∫ h/2

−h/2

1 dx =
1

π
.

ak =
1

π

∫ π

−π

F (x) cos kx dx =
1

πh

∫ h/2

−h/2

cos kx dx =
1

πhk
sin kx

∣∣∣∣h/2

−h/2

=
2

πhk
sin

kh

2
.

bk =
1

π

∫ π

−π

F (x) sin kx dx =
1

πh

∫ h/2

−h/2

sin kx dx =
1

πk
cos kx

∣∣∣∣h/2

−h/2

= 0.

Thus as h → 0 we see that a0 → 1/π and bk → 0. We also compute

lim
h→0

ak = lim
h→0

1

π

2

hk
sin

hk

2
=

1

π
lim
x→0

sin x

x
=

1

π

where we set x = hk/2.
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