Your PRINTED name is: _______ 1.

Your recitation number is _____

2.3.

1. (40 points) Suppose u is a unit vector in \mathbb{R}^n , so $u^T u = 1$. This problem is about the n by n symmetric matrix $H = I - 2u u^T$.

(a) Show directly that $H^2 = I$. Since $H = H^T$, we now know that H is not only symmetric but also ______.

(b) One eigenvector of H is u itself. Find the corresponding eigenvalue.

(c) If v is any vector perpendicular to u, show that v is an eigenvector of H and find the eigenvalue. With all these eigenvectors v, that eigenvalue must be repeated how many times? Is H diagonalizable? Why or why not?

(d) Find the diagonal entries H_{11} and H_{ii} in terms of u_1, \ldots, u_n . Add up $H_{11} + \ldots + H_{nn}$ and separately add up the eigenvalues of H.

- 2. (30 points) Suppose A is a positive definite symmetric n by n matrix.
 - (a) How do you know that A^{-1} is also positive definite? (We know A^{-1} is symmetric. I just had an e-mail from the International Monetary Fund with this question.)
 - (b) Suppose Q is any **orthogonal** n by n matrix. How do you know that $QAQ^T = QAQ^{-1}$ is positive definite? Write down which test you are using.
 - (c) Show that the block matrix

$$B = \left[\begin{array}{cc} A & A \\ A & A \end{array} \right]$$

is positive **semidefinite**. How do you know B is not positive definite?

3. (30 points) This question is about the matrix

$$A = \left[\begin{array}{cc} 0 & -1 \\ 4 & 0 \end{array} \right]$$

.

(a) Find its eigenvalues and eigenvectors.

Write the vector $u(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ as a combination of those eigenvectors.

(b) Solve the equation $\frac{du}{dt} = Au$ starting with the same vector u(0) at time t = 0. In other words: the solution u(t) is what combination of the eigenvectors of A?

(c) Find the 3 matrices in the Singular Value Decomposition $A = U \Sigma V^T$ in two steps.

- –First, compute V and Σ using the matrix A^TA .
- -Second, find the (orthonormal) columns of U.