Your PRINTED name is:	1.
Your recitation number or instructor is	2.
	3.

- **1.** (30 points)
- (a) Find the matrix P that projects every vector b in \mathbb{R}^3 onto the line in the direction of a=(2,1,3).
- (b) What are the column space and null space of P? Describe them geometrically and also give a basis for each space.
- (c) What are all the eigenvectors of P and their corresponding eigenvalues? (You can use the geometry of projections, not a messy calculation.) The diagonal entries of P add up to ______ .

2. (30 points)

- (a) $p = A\hat{x}$ is the vector in C(A) nearest to a given vector b. If A has independent columns, what equation determines \hat{x} ? What are all the vectors perpendicular to the error $e = b A\hat{x}$? What goes wrong if the columns of A are dependent?
- (b) Suppose A = QR where Q has orthonormal columns and R is upper triangular invertible. Find \widehat{x} and p in terms of Q and R and b (not A).
- (c) (Separate question) If q_1 and q_2 are any orthonormal vectors in \mathbb{R}^5 , give a formula for the projection p of any vector b onto the plane spanned by q_1 and q_2 (write p as a combination of q_1 and q_2).

3.	(40	points)	This	$\operatorname{problem}$	is	about	the	n	by	n	matrix	A_n	that	has	zeros	on	its	main
	diag	gonal an	d all d	other enti	ries	equal	to -	-1.	In	M_{λ}	ATLAB	A_n	= eye	e(n)	– one	s(n)).	

- (a) Find the determinant of A_n . Here is a suggested approach: Start by adding all rows (except the last) to the last row, and then factoring out a constant. (You could check n=3 to have a start on part b.)
- (b) For any invertible matrix A, the (1,1) entry of A^{-1} is the ratio of ______ . So the (1,1) entry of A_4^{-1} is ______ .
- (c) Find two orthogonal eigenvectors with $A_3 x = x$. (So $\lambda = 1$ is a double eigenvalue.)
- (d) What is the third eigenvalue of A_3 and a corresponding eigenvector?