
18.06 Quiz 1 Solution
Hold on Monday, 2 March 2009 at 11am in Walker Gym.

Total: 60 points.

Problem 1: Your classmate, Nyarlathotep, performed the usual elimination steps
to convert A to echelon form U , obtaining:

U =

1 4 −1 3
0 2 2 −6
0 0 0 0

 .

(a) Find a set of vectors spanning the nullspace N(A).

(b) If U~y =

 9
−12

0

, find the complete solution ~y (i.e. describe all possible

solutions ~y).

(c) Nyarla gave you a matrix

L =

 1 0 0
2 1 0
−1 3 1


and told you that A = LU . Describe the complete sequence of elimina-
tion steps that Nyarla performed, assuming that she did elimination in the
usual way starting with the first column and eliminating downwards. That
is, Nyarla first subtracted times the first row from the second row,
then subtracted times the first row from the third row, then subtracted

. (Be careful about signs: adding
a multiple of a row is the same as subtracting a negative multiple of that row.)

(d) If A~x =

0
2
6

, then U~x = .

Solution (20 points = 5+5+5+5)
(a) The pivots are in the first two columns of U , so x3 and x4 are the free

variables. Setting x3 = 1, x4 = 0, we get (from the second row of U~x = 0) x2 = −1
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and (from the first row) x1 = 1− 4x2 = 5; setting x3 = 0, x4 = 1, we get (from the
second row) x2 = 3 and (from the first row)x1 = −3− 4x2 = −15. Hence, N(A) is
spanned by two special solutions as follows.

N(A) = x3


5
−1
1
0

 + x4


−15

3
0
1

 for all x3, x4 ∈ R.

(b) First, we need to find a particular solution. For this, we may set the free
variables to y3 = y4 = 0. Thus, (from the second row of U~y = b) y2 = −6 and
(from the first row) y1 = 9 − 4y2 = 33. Hence, all the solution to the equations
are given by the sum of the particular solution and any vector in the nullspace (all
linear combinations of the special solutions):

~y = y3


5
−1
1
0

 + y4


−15

3
0
1

 +


33
−6
0
0

 for all y3, y4 ∈ R

(c) Nyarla first subtracted 2 times the first row from the second row, then
subtracted −1 time s the first row from the third row, then subtracted 3 times the
second row from the third row.

There are a couple of ways to solve this problem. The easiest is to remember
that the L matrix, the product of the inverses of the elimination matrices, is simply
composed of the multipliers for each of the elimination steps below each column.
Under the first column of L we have 2 and −1, and these are thus the multiples of
the first row that get subtracted from rows 2 and 3. Under the second column of L
we have a 3, and this is the multiple of the second row that gets subtracted from
the third row.

The other way to solve it is to just multiply L by U to get A = LU , and re-do
the elimination process. Obviously, this is a bit more work, but is not too bad.

(d) Applying the same elimination operations in (c) to A~x should give U~x. So,
we have 0

2
6

 ;

0
2
6

 ;

0
2
0


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Alternatively, we can just solve U~x from A~x as follows. Let ~v = U~x. Then

L~v = UL~x = A~x =

0
2
6

. Thus, we can solve from the top as follows. v1 = 0,

v2 = 2− 2v1 = 2, and v3 = 6− 3v2 + v1 = 0. Hence, U~x = ~v =

0
2
0

.

REMARK: Some students realized that U~x = L−1(A~x). But several of these

students did not get L−1 =

 1 0 0
−2 1 0
1 −3 1

 correctly. Be careful that the inverse

of

 1 0 0
l21 1 0
l31 l32 1

 is not

 1 0 0
−l21 1 0
−l31 −l32 1

; the lower left entry should be l21l32 −

l31. (Only for elimination matrices, which have nonzero entries below only a single
diagonal, can you always invert just by flipping signs.) More generally, if you find
yourself inverting a matrix, you should realize that there is probably an easier way
to do it: to multiply ~v = L−1(A~x), it is easier to solve L~v = A~x for ~v by elimination
(especially since L is triangular, so you can just do forward substitution as above).
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Problem 2: Which of the following (if any) are subspaces? For any that are not a
subspace, give an example of how they violate a property of subspaces.

(I) Given some 3 × 5 matrix A with full row rank, the set of all solutions to

A~x =

1
1
1

.

(II) All vectors ~x with ~xT~y = 0 and ~xT~z = 0 for some given vectors ~y and ~z.

(III) All 3× 5 matrices with

1
2
3

 in their column space.

(IV) All 5× 3 matrices with

1
2
3

 in their nullspace.

(V) All vectors ~x with ‖~x− ~y‖ = ‖~y‖ for some given fixed vector ~y 6= 0.

Solution (20 points = 4+4+4+4+4)
(I) No. This is not a vector space because ~x = 0 is not in this subspace.

(II) Yes. (This is actually just the left nullspace of the matrix whose columns
are ~y and ~z.)

(III) No. For example, the zero matrix is not in this subset.

(IV) Yes. If the nullspaces of A1 and A2 contain

1
2
3

, then any linear combi-

nation of these matrices does too:

(α1A1 + α2A2)

1
2
3

 = α1A1

1
2
3

 + α2A2

1
2
3

 = 0; for all α1, α2.

(V) No. For example, 2~y satisfies the condition (because ‖2~y− ~y‖ = ‖~y‖) but ~y
does not satisfies the condition (because ‖~y − ~y‖ = 0 6= ‖~y‖). This violates the fact
that a subspace is preserved under multiplication by scalars.
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REMARK: A common problem we saw in the grading is that some students do
not know how to express a counterexample. A counterexample is simply a single
specific element of the set that violates a specific property of subspaces, or a specific
element that should be in the set but isn’t (as in the case of the sets missing ~0
above). One such example is all that is needed to disqualify a set as a subspace; no
further abstract argument is necessary. If you were asked to find an “example” and
you find yourself writing a long, abstract essay, you are probably making a mistake!
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Problem 3: A is a matrix with a nullspace N(A) spanned by the following three
vectors: 

1
2
−1
3

 ,


0
1
1
4

 ,


−1
−1
3
1

 .

(α) Give a matrix B such that its column space C(B) is the same as N(A). (There
is more than one correct answer.) [Thus, any vector ~y in the nullspace of A
satisfies B~u = ~y for some ~u.]

(β) Give a different possible answer to (α): another B with C(B) = N(A).

(γ) For some vector ~b, you are told that a particular solution to A~x = ~b is

~xp =


1
2
3
4

 .

Now, your classmate Zarkon tells you that a second solution is:

~xZ =


1
1
3
0

 ,

while your other classmate Hastur tells you “No, Zarkon’s solution can’t be
right, but here’s a second solution that is correct:”

~xH =


1
1
3
1

 .

Is Zarkon’s solution correct, or Hastur’s solution, or are both correct? (Hint:
what should be true of ~x− ~xp if ~x is a valid solution?)

Solution (20 points = 5+5+10) (α) Since the nullspace is spanned by the given
three vectors, we may simply take B to consist of the three vectors as columns, i.e.,

B =


1 0 −1
2 1 −1
−1 1 3
3 4 1

 .
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B need not be square (many students insisted on square solutions).

(β) For example, we may simply add a zero column to B:

B =


1 0 −1 0
2 1 −1 0
−1 1 3 0
3 4 1 0

 .

Or, we could interchange two columns. Or we could multiply one of the columns by
−1. For example:

B =


1 0 1
2 1 1
−1 1 −3
3 4 −1

 .

Or we could replace one of the columns by a linear combination of that column with
the other two columns (any invertible column operation). Or we could replace B by
−B or 2B. There are many possible solutions. In any case, the solution shouldn’t
require any significant calculation!

(γ) Since any solution ~x to the equation A~x = ~b is of the form ~xp + ~n for some
vector ~n in the nullspace, the vector ~x − ~xp must lie in the nullspace N(A). Thus,
we want to look at:

~xZ − ~xp =


0
−1
0
−4

 , ~xH − ~xp =


0
−1
0
−3

 .

To determine whether a vector ~y lies in the nullspace N(A), we can just check
whether it is in the column space of B, i.e. check whether B~z = ~y has a solution.
As we learned in class, we can check this just by doing elimination: if elimination
produces a zero row in B, it should produce a zero row in the right-hand side. In
terms of B from part (α) augmented by the right-hand side, this gives:

1 0 −1 0
2 1 −1 −1
−1 1 3 0
3 4 1 a

 ;


1 0 −1 0
0 1 1 −1
0 1 2 0
0 4 4 a

 ;


1 0 −1 0
0 1 1 −1
0 0 1 1
0 0 0 a+ 4


We can get a solution if and only if a = −4. So Zarkon is correct.
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REMARK: Several students apparently just stared at the nullspace vectors and
found a linear combination that gave ~xZ − ~xp:

~xZ − ~xp =


0
−1
0
−4

 = 1


1
2
−1
3

− 2


0
1
1
4

 + 1


−1
−1
3
1

 .

Then they stared at Hastur’s solution, couldn’t find such a combination, and con-
cluded that it was not a solution. This conclusion is correct in this case, and was
awarded full marks because you were not asked to justify your solution. However,
doing elimination is much more systematic and reliable, and ensures that there isn’t
a linear combination that you simply missed. Use elimination next time!

REMARK: Some students saw the zero components of ~xZ − ~xp, didn’t see any
corresponding zero components in the given nullspace vectors, and concluded that
~xZ − ~xp was not in the nullspace. This is wrong: the key point is that ~xZ − ~xp

can be any vector in the nullspace, which means any linear combination of the given
nullspace vectors. There are plenty of ways to combine nonzero vectors to get vectors
with zero components!
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