
18.06 Problem Set 7 Solution
Due Wednesday, 15 April 2009 at 4 pm in 2-106.

Total: 150 points.

Problem 1: Diagonalize A =

(
2 1
1 2

)
and compute SΛkS−1 to prove this formula

for Ak:

Ak =
1

2

(
3k + 1 3k − 1
3k − 1 3k + 1

)
.

Solution (15 points)
Step 1: eigenvalues. det(A− λI) = λ2 − trace(A) + det(A) = λ2 − 4λ + 3 = 0.

The solutions are λ1 = 1, λ2 = 3.
Step 2: solve for eigenvectors.

λ1 = 1, A− λI =

(
1 1
1 1

)
, v1 =

(
1
−1

)
λ2 = 3, A− λI =

(
−1 1
1 −1

)
, v2 =

(
1
1

)
.

Step 3: let S =

(
1 1
−1 1

)
be the matrix whose columns are eigenvectors. Let

Λ =

(
1 0
0 3

)
be the matrix for eigenvalues. Then we have

Ak = SΛkS−1 =

(
1 1
−1 1

)(
1 0
0 3

)k (
1 1
−1 1

)−1

=

(
1 1
−1 1

)(
1 0
0 3k

)
1

2

(
1 −1
1 1

)
=

1

2

(
3k + 1 3k − 1
3k − 1 3k + 1

)
.

Problem 2: Consider the sequence of numbers f0, f1, f2, ..., defined by the recur-
rence relation fn+2 = 2fn+1 + 2fn, starting with f0 = f1 = 1 (giving 1, 1, 4, 10, 28,
76, 208, ...).

(a) As we did for the Fibonacci numbers in class (and in the book), express this
process as repeated multiplication of a vector ~uk = (fk+1, fk)

T by a matrix A:
~uk+1 = A~uk, and thus ~uk = Ak~u0. What is A?
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(b) Find the eigenvalues of A, and thus explain that the ratio fk+1/fk tends to-
wards as k → ∞. Check this by computing fk+1/fk for the first
few terms in the sequence.

(c) Give an explicit formula for fk (it can involve powers of numbers, but not
powers of matrices) by expanding f0 in the basis of the eigenvectors of A.

(d) If we apply the recurrence relation in reverse, we use the formula: fn =
fn+2/2 − fn+1 (just solving the previous recurrence formula for fn). Show
that you get the same reverse formula if you just compute A−1.

(e) What does |fk/fk+1| tend towards as k → −∞ (i.e. after we apply the formula
in reverse many times)? (Very little calculation required!)

Solution (30 points = 5+5+10+5+5)
(a) The recurrence relation gives

fk+2 = 2fk+1 + 2fk

fk+1 = fk+1.

Another way to write this is

~uk+1 =

(
fk+2

fk+1

)
=

(
2 2
1 0

)(
fk+1

fk

)
= A~uk, ⇒ A =

(
2 2
1 0

)
.

(b) Solving det(A − λI) = λ2 − 2λ − 2 = 0 gives λ1 = 1 +
√

3 ≈ 2.732 and
λ2 = 1 −

√
3 ≈ −0.732. Since |λ1| > |λ2|, fk+1/fk tends towards λ1 ≈ 2.732, as

k →∞.
Check first few terms: 1, 1, 4, 10, 28, 76, 208, 568, . . .

1/1 = 1

4/1 = 4

10/4 = 2.5

28/10 = 2.8

76/28 ≈ 2.7143

208/76 ≈ 2.7368

568/208 ≈ 2.7308.
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REMARK: Another phenomenon one should notice is that, in the sequence,
fk+1/fk > λ1 when k is odd and fk+1/fk < λ1 when k is even. This is because the
second eigenvalue λ2 is negative. We will see in the explicit formula of fk below.

(c) Find the eigenvectors.

λ1 = 1 +
√

3, A− λI =

(
1−
√

3 2

1 −1−
√

3

)
, v1 =

(
1 +
√

3
1

)
λ2 = 1−

√
3, A− λI =

(
1 +
√

3 2

1 −1 +
√

3

)
, v2 =

(
1−
√

3
1

)
.

Then, we expand ~u0 as follows.

~u0 =

(
1
1

)
=

1

2

(
1 +
√

3
1

)
+

1

2

(
1−
√

3
1

)
=

1

2
v1 +

1

2
v2.

Hence, we have

~uk = Ak~u0 =
1

2
λk1v1 +

1

2
λk2v2.

In particular,

fk =
1

2

[
(1 +

√
3)k + (1−

√
3)k
]
.

REMARK: From the explicit formula for fk, we see that fk >
1
2
(1 +

√
3)k if

k is even and fk <
1
2
(1 +

√
3)k if k is odd. This explains the earlier remark that

fk+1/fk < 1 +
√

3 if k is even and fk+1/fk > 1 +
√

3 if k is odd.

(d) It is easy to compute A−1 = −1

2

(
0 −2
−1 2

)
=

(
0 1

1/2 −1

)
.

Applying the recurrence relation in reverse gives

fn+1 = fn+1

fn = fn+2/2− fn+1.

That is

~un =

(
fn+1

fn

)
=

(
0 1

1/2 −1

)(
fn+2

fn+1

)
= A−1~un+1.

(e) Applying the process in reverse is dominated by the biggest-magnitude eigen-
value of A−1. The eigenvalues of A−1 are just the reciprocals of the eigenvalues of
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A, so its biggest-magnitude eigenvalue is the reciprocal of the smallest-magnitude
eigenvalue of A, i.e. 1/λ2. Hence,

∣∣ fk
fk+1

∣∣ ≈ ∣∣ λk2
λk+1

2

∣∣ = |λ−1
2 | =

√
3 + 1

2
≈ 1.366.

Problem 3: Suppose that A = SΛS−1. Take determinants to prove that detA
is the product of the eigenvalues of A. (This quick proof only works when A is

.)

Solution (5 points)
Since the determinant is multiplicative, we have

det(A) = det(SΛS−1) = det(S) det(Λ) det(S)−1 = det(Λ) = λ1 · · ·λn,

where λ1, . . . , λn are eigenvalues of A.
The proof only works when A is diagonalizable.

REMARK: Note that the determinant is always the product of the eigenvalues,
even for non-diagonalizable matrices. However, the proof for the non-diagonalizable
case is a bit trickier.

Problem 4: In this problem, you will show that the trace of a matrix (the sum of
the diagonal entries) is equal to the sum of the eigenvalues, by first showing that
AB and BA have the same trace for any matrices A and B. Follow the following
steps:

(a) The explicit formula for the entries cij of C = AB is cij =
∑

k aikbkj (where
aik and bkj are the entries of A and B, respectively). The trace of C is

∑
i cii.

Write down the explicit formula for the entries dij of the product D = BA.
By plugging these matrix-multiply formulas into the formulas for the trace of
C = AB and D = BA, and comparing them, prove that AB and BA have the
same trace.

(b) A = SΛS−1, assuming A is . Combining
this factorization with the fact you proved in (a), show that the trace of A is
the same as the trace of Λ, which is sum of the eigenvalues.
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Solution (10 points)
(a) An explicit formula for entries dij of D is dij =

∑
k bikakj, just switching the

role of a and b in the expression of cij. So,

trace(C) =
∑
i

cii =
∑
i

∑
k

aikbki

trace(D) =
∑
i

dii =
∑
i

∑
k

bkiaik.

They are the same because we can change the indices i and k in the summation.

(b) For this to work, we have to assume that A is a diagonalizable n×n matrix.
Using the identity above, we have (by viewing SΛ as one matrix)

trace(A) = trace(SΛS−1) = trace(S−1SΛ) = trace(Λ) = λ1 + · · ·+ λn,

where λ1, . . . , λn are eigenvalues of A.

REMARK: This again works even if A does not have a full set of independent
eigenvectors. One may use generalized eigenvectors to do the same trick. We again
will omit the details.

Problem 5: Suppose A2 = A. (This does not mean A = I, since A might not be
invertible; it might be a projection onto a subspace, for example.)

(a) Explain why any eigenvector with λ = 0 is in the space
of A, and vice versa (any nonzero vector in that space is an eigenvector with
λ = 0).

(b) Explain why any eigenvector with λ = 1 is in the space
of A, and vice versa (any nonzero vector in that space is an eigenvector with
λ = 1). (Hint: first explain why each column of A is an eigenvector.)

(c) Conclude from the dimensions of these subspaces that any such A must have
a full set of independent eigenvectors and hence be diagonalizable.

Solution (15 points = 5+5+5)
(a) Any eigenvector with λ = 0 is in the nullspace of A. This is because ~v ∈ N(A)

if and only if A~v = 0 = 0 · ~v.
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(b) Any eigenvector with λ = 1 is in the column space of A. For each column
~x of A, A2 = A implies that A~x = ~x. Hence, each column vector is an eigenvector
with λ = 1, so is any vector in the column space.

Conversely, if v is an eigenvector with λ = 1, that means that Av = v, which
implies that v is in C(A).

REMARK: Note that for a more general matrix with nonzero eigenvalues 6= 1,
it is still true that any eigenvector for a nonzero eigenvalue is in the column space
of A, since A(v/λ) = v. However, the span of these eigenvectors may only be a
subspace of the column space (if A is not diagonalizable).

(c) Say that A is an n × n matrix. Note that the dimension of the column
space is the rank of A, whereas the dimension of the nullspace of A is n− rank(A).
The dimensions add up to n. Hence, the eigenspace for λ = 0 and the eigenspace
for λ0 span the whole space Rn. Therefore, A much have a full set of independent
eigenvectors and hence diagonalizable.

Problem 6: A genderless alien society survives by cloning/budding. Every year,
5% of young aliens become old, 3% of old aliens become dead, and 1% of the old
aliens and 2% of the dead aliens are cloned into new young aliens. The population
can be described by a Markov process:young

old
dead


year k+1

= A

young
old

dead


year k

(a) Give the Markov matrix A, and compute (without Matlab) the steady-state
young/old/dead population fractions.

(b) In Matlab, enter your matrix A and a random starting vector x = rand(3,1);

x = x / sum(x) (normalized to sum to 1). Now, compute the population for
the first 100 years, and plot it versus time, by the following Matlab code:

p = [];

for k = 0:99

p = [ p, A^k * x ];

end

plot([0:99], p’)

legend(’young’, ’old’, ’dead’)

xlabel(’year’); ylabel(’population fraction’);
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Check that the final population p(:,end) is close to your predicted steady
state.

(c) In Matlab, compute A to a large power A1000 (in Matlab: A^1000). Explain
why you get what you do, in light of your answer to (a).

Solution (15 points = 5+5+5)
(a) The Markov matrix A is given by0.95 0.01 0.02

0.05 0.96 0
0 0.03 0.98


Computing the steady-state is equivalent to find the eigenvector for λ = 1. We

do a Gaussian elimination.

A− I =

−0.05 0.01 0.02
0.05 −0.04 0

0 0.03 −0.02

;

−0.05 0.01 0.02
0 −0.03 0.02
0 0.03 −0.02

;

5 −1 −2
0 3 −2
0 0 0


A solution is given by v = (8

5
, 2, 3)T. If we normalize the vector so that the sum of

the coordinates is 1, we get v′ = 1
33

(8, 10, 15)T ≈ (0.2424, 0.3030, 0.4545)T.
In other words, the steady-state young/old/dead population ratio is 8 : 10 : 15.

(b) The code and the result is as follows.

>> A = [0.95, 0.01, 0.02; 0.05, 0.96, 0; 0, 0.03, 0.98]

A =

0.9500 0.0100 0.0200

0.0500 0.9600 0

0 0.0300 0.9800

>> x = rand(3, 1); x = x / sum(x)

x =

0.4410

0.4903

0.0687
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>> p = [];

>> for k = 0:99

p = [p, A^k * x ];

end

>> plot([0:99], p’)

>> legend(’young’, ’old’, ’dead’)

>> xlabel(’year’); ylabel(’polulation fraction’);

>> p(:, end)

ans =

0.2412

0.3058

0.4530
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(c)

>> A^1000

ans =

0.2424 0.2424 0.2424

0.3030 0.3030 0.3030

0.4545 0.4545 0.4545
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For a large power like A1000, we should expect any initial vector to converge to the
steady state. That means that the column space of A1000 should just be the steady-
state eigenvector, which means that each column of A should be approximately this
eigenvector (normalized so that each column sums to 1).

Problem 7: If A is both a symmetric matrix and a Markov matrix, why is its
steady-state eigenvector (1, 1, . . . , 1)T?

Solution (5 points)
A very important property of a Markov matrix is that [1 1 · · · 1 1]A =

[1 1 · · · 1 1]. Taking transpose, we have

AT[1 1 · · · 1 1]T = [1 1 1 · · · 1 1]T.

But A = AT is symmetric. Hence, [1 1 . . . , 1]T is an eigenvector with λ = 1. It is
a steady-state eigenvector.

Problem 8: Find the λ’s and ~x’s so that ~u = eλt~x is a solution of

d~u

dt
=

(
2 3
0 −1

)
~u. (1)

Make a linear combination of these solutions to solve this equation with the initial
condition ~u(0) = (5,−2)T.

Solution (15 points)

Step 1: find the eigenvalues and the eigenvectors of the matrix A =

(
2 3
0 −1

)
.

Solving det(A− λI) = λ2 − λ− 2 = 0 gives λ1 = 2 and λ2 = −1.

λ1 = 2, A− λI =

(
0 3
0 −3

)
, ~v1 =

(
1
0

)
λ2 = −1, A− λI =

(
3 3
0 0

)
, ~v2 =

(
1
−1

)
.

Step 2: we have

~u1 = eλ1t~v1 =

(
e2t

0

)
and ~u2 = eλ2t~v2 =

(
e−t

−e−t
)

to be the solution of (1).

9



Step 3: solve the initial value problem for ~u = c1~u1 + c2~u2; this requires to solve(
1 1
0 −1

)(
c1
c2

)
=

(
5
−2

)
.

We then have c1 = 3, c2 = 2. Hence,

~u = c1~u1 + c2~u2 =

(
3e2t + 2e−t

−2e−t

)
.

Problem 9: Explain how to write an equation αd
2y
dt2

+ β dy
dt

+ γy = 0 as a vector

equation M d~u
dt

= A~u.

Solution (5 points)

Write ~u =

(
dy
dt

y

)
. Then d~u

dt
=

(
d2y
dt2
dy
dt

)
. The equation gives that

α
d2y

dt2
= −βdy

dt
− γy,

dy

dt
=
dy

dt
.

This translates to say (
α 0
0 1

)
d~u

dt
=

(
−β −γ
1 0

)
.

Remark to the graders, it is okay for the students to assume that α 6= 0 and
write the final result as follows.

d~u

dt
=

(
−β
α
− γ
α

1 0

)
.

Problem 10: A matrix A is antisymmetric, or “skew” symmetric, which means
that AT = −A. Prove that the matrix Q = eAt is orthogonal: transpose the
series for Q = eAt to show that you get the series for e−At, and thus QTQ = I.
Therefore, if ~u(t) = eAt~u(0) is any solution to the system d~u

dt
= A~u, then we know

that ‖~u(t)‖/‖~u(0)‖ = .
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Solution (15 points=10+5)
Write out the series that defines Q = eAt and transpose.

QT = (eAt)T =
( ∞∑
n=0

(At)n

n!

)T

=
∞∑
n=0

(ATt)n

n!
=
∞∑
n=0

(−At)n

n!
= e−At.

Hence QTQ = e−AteAt = I. This implies that Q is orthogonal.

Since orthogonal matrices preserve norms, we must have ‖eAt~u(0)‖ = ‖u(0)‖.
Hence, ‖~u(t)‖/‖~u(0)‖ = 1.

REMARK: it is not in general true that eBteAt = e(B+A)t for any square matrices
A and B. In fact, this is only true if AB = BA. But this is certainly true for B = −A
as it is here. More simply, eAt is the matrix that propagates the solution forward in
time by t, while e−At propagates the solution backwards in time by −t, so the two
matrices must be inverses.

Problem 11: If A2 = A, show from the infinite series that eAt = I + (et− 1)A. For

A =

(
1 1
0 0

)
, this gives eAt = .

Solution (10 points)
Since A2 = A, we have Ak = A for any k > 0.

eAt =
∞∑
n=0

Antn

n!
= I +

∞∑
n=1

Atn

n!
= I + A(

∞∑
n=1

tn

n!

)
= I + A(et − 1).

When A =

(
1 1
0 0

)
, we have

eAt = I + (et − 1)A =

(
et et − 1
0 1

)

Problem 12: Assume A is diagonalizable with real eigenvalues. What condition
on the eigenvalues of A ensures that the solutions of d~u

dt
= A~u will not blow up

for t → ∞? In comparison, what condition on the eigenvalues of A ensures that
solutions of the linear recurrence relation ~uk+1 = A~uk will not blow up for k →∞?
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Solution (10 points = 5+5)
For ODE problem, if the solutions do not blow up as t→∞, the eigenvalues λ

of A has to have real part less than or equal to 0, i.e. Re(λ) ≤ 0. This is because
the solution looks like eλt~v, where ~v is an eigenvector with eigenvalue λ.

For the linear recurrence problem, if ~uk does not blow up, the eigenvalues λ of A
has to have absolute value less than or equal to 1, that is |λ1| ≤ 1. This is because
the main term in ~uk looks like λk~v, where ~v is an eigenvector with eigenvalue λ.
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