18.06 Problem Set 6

Due Wednesday, 8 April 2009 at 4pm in 2-106.

- 1. If A is a 7×7 matrix and $\det A = 17$, what is $\det(3A^2)$?
- 2. The determinant of a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\det A = ad bc$. Assuming no row swaps are required, perform elimination on A and show explicitly that ad bc is the product of the pivots.
- 3. If **x** and **y** are vectors in \mathbb{R}^n (n > 1), what is the determinant of $\mathbf{x}\mathbf{y}^T$? (This is *not* the dot product $\mathbf{x}^T\mathbf{y}$.) Hint: the rank of $\mathbf{x}\mathbf{v}^T$ is ______.
- 4. Does $\det(AB) = \det(BA)$ in general? (a) True or false if A and B are square $n \times n$ matrices? (b) True or false if A is $m \times n$ and B is $n \times m$, with $m \neq n$? For both (a) and (b), give a reason if true or a counter-example if false.
- 5. Find the eigenvalues of the matrices $A = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}$, $A^2 = \begin{pmatrix} 0.61 & 0.52 \\ 0.39 & 0.48 \end{pmatrix}$, $A^{\infty} \approx \begin{pmatrix} 0.57143 & 0.57143 \\ 0.42857 & 0.42857 \end{pmatrix}$, and $B = \begin{pmatrix} 0.3 & 0.6 \\ 0.7 & 0.4 \end{pmatrix}$. Note that B is just A with the rows exchanged, which may change λ !
- 6. A singular square matrix must have an eigenvalue of $\lambda =$
- 7. The matrix $A = \begin{pmatrix} 2 & 10 & -2 \\ 10 & 5 & 8 \\ -2 & 8 & 11 \end{pmatrix}$ has the three eigenvalues $\lambda = 18, 9, -9$.
 - (a) Find eigenvectors corresponding to these three eigenvalues.
 - (b) Compute the dot products of the eigenvectors you found with one another. Hence, the eigenvectors divided by their lengths form an _______ basis with this *A*!
 - (c) Write the vector $\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$ in the basis of your three eigenvectors, and thereby compute $A^{10}\mathbf{x}$ (write your answer as a summation of eigenvectors times λ^{10} for each λ).
- 8. The eigenvalues of A and A^T are the same, because $\det(A \lambda I) = \det(A \lambda I)^T = \det(A^T \lambda I)$. By coming up with a 2×2 counter-example, show that the eigenvectors of A and A^T need not be the same.
- 9. In Matlab, make a random 5×5 symmetric matrix A by the commands:

$$A = rand(5,5); A = A' * A; B = A$$

copying the result to a matrix B. Now, you will repeatedly compute the QR factorization B = QR and then replace B with the new matrix RQ, via the commands:

$$[Q,R] = qr(B); B = R * Q$$

Repeat the above line over and over (you can use the up-arrow key in Matlab to fetch the previous command), until B stops changing. You can ignore tiny numbers smaller than 10^{-7} (which Matlab prints as 1e-7) or so.

You should find that B converges towards a diagonal matrix! Compare the numbers on its diagonal [diag(B)] in Matlab] to the eigenvalues of A [computed by eig(A) in Matlab].

10. If we perform the QR factorization of a square matrix A, obtaining A = QR, show that the matrix RQ is similar to A (as defined in section 6.6) and hence has the same eigenvalues (hint: $R = Q^T A$, and Q is an matrix). Thus, the eigenvalues of the matrix B in the previous problem are the same as the eigenvalues of A, no matter how many times you do the $QR \to RQ$ replacement.

1