
18.06 Problem Set 6 Solution
Due Wednesday, 8 April 2009 at 4 pm in 2-106.

Total: 100 points.

Problem 1: If A is a 7× 7 matrix and det A = 17, what is det(3A2)?

Solution (10 points)
For any square matrix M,N of the same size, we have det(MN) = det(M) det(N).

Thus, det(A2) = det(A) det(A) = 172.
Note that we proved in class that multiplying a single row by 3 multiplies the

determinant by 3. Multiplying the whole 7× 7 matrix by 3 multiplies all 7 rows by
3, and hence multiplies the determinant by 37. Hence, we have det(3A2) = 37 ·172 =
632043. (It is okay to leave it as 37 · 172.

Problem 2: The determinant of a 2 × 2 matrix A =

(
a b
c d

)
is det A = ad − bc.

Assuming no row swaps are required, perform elimination on A and show explicitly
that ad− bc is the product of the pivots.

Solution (5 points)
We need to subtract c/a times row 1 from row 2, that leaves us

(
a b
c d

)
;

(
a b
0 d− b · a/c

)

The product of the pivots is a · (d− ab/c) = ad− bc = det A.

REMARK: We proved that this is true for any n× n matrix in class (it is also
in the book), not including row swaps (which flip the sign).

Problem 3: If ~x and ~y are vectors in Rn (n > 1), what is the determinant of ~x~yT?
(This is not the dot product ~xT~y.) Hint: the rank of ~x~yT is .

Solution (5 points) The product A = ~x~yT is an n × n matrix. But we know its

column space C(A) ⊆ C(~x) is at most 1-dimensional (spanned by ~x if ~y 6= ~0). Hence
A is singular because n > 1 ≥ rank(A) = dim C(A). Therefore, det(A) = 0.
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An alternative way to see it is that all the rows are a multiple of ~yT, and all
the columns are multiples of ~x. Hence, the determinant must be zero because the
determinant is zero when any rows or columns are linearly dependent.

Problem 4: Does det(AB) = det(BA) in general? (a) True or false if A and B
are square n × n matrices? (b) True or false if A is m × n and B is n ×m, with
m 6= n? For both (a) and (b), give a reason if true or a counter-example if false.

Solution (10 points = 5+5)
(a) True. This is because if A and B are square matrix, det(AB) = det(A) det(B) =

det(B) det(A) = det(BA).

(b) False. This is almost always not true. We may use the solution to problem
3 to make a counter example: det(xyT) = 0, but det(xTy) = xTy. For example,

A =

(
1
1

)
, B =

(
1 1

)

Then,

AB =

(
1 1
1 1

)
, BA = (2);

det(AB) = 0, det(BA) = 2.

REMARK: In fact, if m > n, det(AB) = 0. This is because the column space
C(AB) ⊆ C(A) has dimension ≤ n < m. So, AB, as an m×m matrix, is singular.
Hence det(AB) = 0.

Problem 5: Find the eigenvalues of the matrices A =

(
0.7 0.4
0.3 0.6

)
, A2 =

(
0.61 0.52
0.39 0.48

)
,

A∞ ≈
(

0.57143 0.57143
0.42857 0.42857

)
, and B =

(
0.3 0.6
0.7 0.4

)
. Note that B is just A with the

rows exchanged, which may change λ!

Solution (15 points = 5+2.5+2.5+5)
(a) For the matrix A: det(A − λI) = λ2 − 1.3λ + 0.3 = 0. We solve to have

λ1 = 1, λ2 = 0.3.
(b) For the matrix A2: det(A2 − λI) = λ2 − 1.09λ + 0.09 = 0. We solve to have

λ1 = 1, λ2 = 0.09.
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(c) For the matrix A∞: det(A∞ − λI) = λ2 − λ = 0. We solve to have λ1 = 1,
λ2 = 0.

(d) For the matrix B: det(B − λI) = λ2 − 0.7λ − 0.3 = 0. We solve to have
λ1 = 1, λ2 = −0.3.

REMARK: It is discussed in class that all powers of A have the same eigenvec-
tors, and the eigenvalues are simply exponentiated. In particular, the eigenvalues in
(b) are the squares of the eigenvalues in (a), and the eigenvalues in (c) are just the
limit of an infinite power of the eigenvalues in (a).

Problem 6: A singular square matrix must have an eigenvalue of λ = .

Solution (5 points)
A singular square matrix must have an eigenvalue of λ = 0. This is because pick

any vector ~x in the nullspace of the matrix A. Then A~x = 0 = 0 · ~x implies that ~x
is an eigenvector of A with eigenvalue 0.

In general, a matrix A being singular is equivalent to saying that N(A) contains
nonzero vectors (which is equivalent to saying A has dependent columns).

Problem 7: The matrix A =




2 10 −2
10 5 8
−2 8 11


 has the three eigenvalues λ =

18, 9,−9.

(a) Find eigenvectors corresponding to these three eigenvalues.

(b) Compute the dot products of the eigenvectors you found with one another.
Hence, the eigenvectors divided by their lengths form an
basis with this A!

(c) Write the vector ~x =
(
1 0 0

)T
in the basis of your three eigenvectors, and

thereby compute A10~x (write your answer as a summation of eigenvectors times
λ10 for each λ).

Solution (25 points = 10+5+10)
The general principal is that we find the eigenvectors by finding the nullspace

of A − λI, and we find the nullspace by doing elimination to row-reduced echelon
form as we learned before exam 1. Once we find the nullspace, any special solution
is an eigenvector; usually there is only one special solution of A− λI (the nullspace
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is 1-dimensional). Note that any multiple of an eigenvector is also an eigenvector
with the same eigenvalue, but it is only necessary to find one.

(a) For λ1 = 18, we do elimination to echelon form to find the nullspace of the
matrix

A− λ1I =



−16 10 −2
10 −13 8
−2 8 −7


 ;



−2 8 −7
10 −13 8
−16 10 −2


 ;



−2 8 −7
0 27 −27
0 −54 54




;



−2 8 −7
0 1 −1
0 0 0


 ;



−2 0 1
0 1 −1
0 0 0


 .

So the first eigenvector is a vector in the nullspace of the above matrix

v1 =




1
2
2


 .

We can replace this by any multiples of v1.
For λ2 = 9,

A− λ2I =



−7 10 −2
10 −4 8
−2 8 2


 ;



−2 8 2
10 −4 8
−7 10 −2


 ;



−2 8 2
0 36 18
0 −18 −9




;



−1 4 1
0 2 1
0 0 0


 ;



−1 0 −1
0 2 1
0 0 0


 .

So the second eigenvector is

v2 =




2
1
−2


 .

For λ3 = −9,

A− λ3I =




11 10 −2
10 14 8
−2 8 20


 ;



−2 8 20
10 14 8
11 10 −2


 ;



−2 8 20
0 54 108
0 54 108




;



−1 4 10
0 1 2
0 0 0


 ;



−1 0 2
0 1 2
0 0 0


 .
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So the third eigenvector is

v3 =




2
−2
1


 .

(b) Orthonormal basis.

vT
1 v2 = 1 · 2 + 2 · 1 + 2 · (−2) = 0,

vT
1 v3 = 1 · 2 + 2 · (−2) + 2 · 1 = 0,

vT
2 v3 = 2 · 2 + 1 · (−2) + (−2) · 1 = 0.

So, the eigenvectors are orthogonal to each other. Hence, the eigenvectors divided
by their lengths form an orthonormal basis with A.

REMARK: In general, the eigenvectors of any symmetric matrix A with distinct
eigenvalues are always orthogonal; we will prove this in class for lecture 27.

(c) Since v1, v2, v3 are orthogonal, we can find an orthonormal basis out of it by
taking

q1 = v1/‖v1‖ =




1/3
2/3
2/3


 , q2 = v2/‖v2‖ =




2/3
1/3
−2/3


 , q3 = v3/‖v3‖ =




2/3
−2/3
1/3


 .

Let Q be the matrix whose columns are these orthonormal basis, i.e.

Q =




1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3


 .

Write ~x = Qc. Then, we have

c = QT~x = Q =




1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3







1
0
0


 =




1/3
2/3
2/3




Hence,

A10~x = c1A
10q1 + c2A

10q2 + c3A
10q3 = c1λ

10
1 q1 + c2λ

2q2 + c3λ
10
3 q3

=
1

3
· 1810




1/3
2/3
2/3


 +

2

3
· 910




2/3
1/3
−2/3


 +

2

3
· (−9)10




2/3
−2/3
1/3


 .
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Problem 8: The eigenvalues of A and AT are the same, because det(A − λI) =
det(A − λI)T = det(AT − λI). By coming up with a 2 × 2 counter-example, show
that the eigenvectors of A and AT need not be the same.

Solution (10 points)

For example, A =

(
0 1
4 0

)
. We solve det(A − λI) = λ2 − 4 = 0. So the

eigenvalues are λ1 = 2, λ2 = −2.
For λ1 = 2,

A− λ1I =

(−2 1
4 −2

)
⇒ v1 =

(
1
2

)

AT − λ1I =

(−2 4
1 −2

)
⇒ v′1 =

(
2
1

)

They are not the same.
REMARK: A and AT here are actually similar: AT = P−1AP , where P is the

permutation matrix

(
0 1
1 0

)
. This is why the eigenvectors of AT are P−1 (= P )

times the eigenvectors of A, i.e. the rows of the eigenvectors are simply swapped.
More generally, it is possible to prove that every square matrix is similar to its
transpose (and the proof is pretty easy if you assume A is diagonalizable), so one
can write an explicit formula relating the eigenvectors of A and AT. We’ll leave this
as an exercise for the interested student.

Problem 9: In Matlab, make a random 5×5 symmetric matrix A by the commands:

A = rand(5,5); A = A’ * A;

B = A

copying the result to a matrix B. Now, you will repeatedly compute the QR factor-
ization B = QR and then replace B with the new matrix RQ, via the commands:

[Q,R] = qr(B); B = R * Q

Repeat the above line over and over (you can use the up-arrow key in Matlab to
fetch the previous command), until B stops changing. You can ignore tiny numbers
smaller than 10−7 (which Matlab prints as 1e−7) or so.
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You should find that B converges towards a diagonal matrix! Compare the
numbers on its diagonal [diag(B) in Matlab] to the eigenvalues of A [computed by
eig(A) in Matlab].

Solution (10 points)
The code using QR → RQ replacement to compute the eigenvalue is as follows.

>> A = rand(5, 5); A = A’ * A;

>> B = A

B =

2.7345 1.8859 2.0785 1.9442 1.9567

1.8859 2.2340 2.0461 2.3164 2.0875

2.0785 2.0461 2.7591 2.4606 1.9473

1.9442 2.3164 2.4606 2.5848 2.2768

1.9567 2.0875 1.9473 2.2768 2.4853

>> [Q,R] = qr(B); B = R * Q

B =

10.7030 1.5894 0.3277 0.1970 -0.0008

1.5894 1.1296 0.1032 0.1190 -0.0004

0.3277 0.1032 0.6661 -0.1293 0.0007

0.1970 0.1190 -0.1293 0.2986 -0.0016

-0.0008 -0.0004 0.0007 -0.0016 0.0004

>> [Q,R] = qr(B); B = R * Q

B =

10.9735 0.1349 0.0166 0.0045 0.0000

0.1349 0.8890 0.0183 0.0244 0.0000

0.0166 0.0183 0.6936 -0.0534 -0.0000

0.0045 0.0244 -0.0534 0.2413 0.0000

0.0000 0.0000 -0.0000 0.0000 0.0004

>> [Q,R] = qr(B); B = R * Q
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B =

10.9753 0.0110 0.0010 0.0001 -0.0000

0.0110 0.8886 0.0122 0.0064 -0.0000

0.0010 0.0122 0.6986 -0.0184 0.0000

0.0001 0.0064 -0.0184 0.2348 -0.0000

-0.0000 -0.0000 0.0000 -0.0000 0.0004

>> [Q,R] = qr(B); B = R * Q

B =

10.9753 0.0009 0.0001 0.0000 -0.0000

0.0009 0.8890 0.0094 0.0017 0.0000

0.0001 0.0094 0.6990 -0.0062 -0.0000

0.0000 0.0017 -0.0062 0.2341 0.0000

0.0000 0.0000 -0.0000 0.0000 0.0004

....... (repeated 21 times)

>> [Q,R] = qr(B); B = R * Q

B =

10.9753 0.0000 0.0000 0.0000 -0.0000

0.0000 0.8894 0.0000 -0.0000 -0.0000

0.0000 0.0000 0.6986 -0.0000 -0.0000

0.0000 0.0000 -0.0000 0.2340 0.0000

0.0000 0.0000 -0.0000 0.0000 0.0004

The eigenvalue of A computed by eig(A) is

>> eig(A)

ans =

0.0004

0.2340

0.6986

0.8894
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10.9753

They give the same answer. Also note that diagonal of B is the eigenvalues
in descending order. (If the eigenvalues were positive and negative, it would be in
descending order by |λ|.

REMARK: This is the basic step in what is known as the “QR” algorithm to
compute the eigenvalues of a matrix (and it can also get eigenvectors at the same
time with some modifications), which was first discovered in 1959 and was named
one of the “top 10 algorithms of the century” in 2000. Matlab’s “eig” function
contains a more sophisticated version of the same algorithm, modified in various
ways to make it converge more quickly. The proof of why it converges is rather
subtle; it turns out that you are implicitly doing a Gram-Schmidt orthogonalization
of Ak after k steps of the QR algorithm. Further discussion of the QR algorithm is
a topic for another course (18.335), however.

Problem 10: If we perform the QR factorization of a square matrix A, ob-
taining A = QR, show that the matrix RQ is similar to A (as defined in sec-
tion 6.6) and hence has the same eigenvalues (hint: R = QT A, and Q is an

matrix). Thus, the eigenvalues of the matrix B in the
previous problem are the same as the eigenvalues of A, no matter how many times
you do the QR → RQ replacement.

Solution (5 points)
The matrix Q is an orthogonal matrix. Hence Q−1 = QT.
The matrices RQ and A are therefore similar because R = QTA = Q−1A implies

RQ = Q−1AQ.

REMARK: It is worthwhile to point out that RQ is also symmetric! This is
because RQ = QTAQ. More precisely, (QTAQ)T = QTAT(QT)T = QTAQ.
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