
18.06 Problem Set 2 Solution
Due Wednesday, 18 February 2009 at 4 pm in 2-106.

Total: 155 points.

Problem 1: What threee elimination matrices E21, E31, and E32 put A into upper-
triangular form E32E31E21A = U? Using these, compute the matrix L (and U) to
factor A = LU .

A =

1 1 1
2 4 5
0 4 0


Solution (10 points)

The Gaussian elimination process is as follows: 1 1 1
2 4 5
0 4 0

 ;

 1 1 1
0 2 3
0 4 0

 ;

 1 1 1
0 2 3
0 0 −6

 .

As we can see from this process, the matrix E21 corresponds to subtracting twice
of the first row from the second row; the matrix E31 is trivial; the matrix E32

corresponds to subtracting twice of the second row from the third row. In other
words,

E21 =

 1 0 0
−2 1 0
0 0 1

 , E31 =

1 0 0
0 1 0
0 0 1

 , E32 =

1 0 0
0 1 0
0 −2 1

 .

Hence,

L = E−1
21 E−1

31 E−1
32 =

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
0 2 1

 =

1 0 0
2 1 0
0 2 1

 ; U =

1 1 1
0 2 3
0 0 −6

 .

Problem 2: Suppose we have a 3× 3 lower-triangular L matrix of the form

L =

 1 0 0
`21 1 0
`31 `32 1

 .
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(a) When you do the usual Gaussian-elimination steps on L, what matrix do you
get?

(b) When you do the same elimination steps to I, what matrix do you get? (Hint:
you can write the answer in terms of L very simply.)

(c) When you apply the same steps to a matrix A = LU , what matrix do you get
(write your answer in terms of L, U , and/or A).

(It is possible to answer this question without doing any calculations.)

Solution (15 points = 5+5+5)
(a) We get the identity matrix if we apply the usual Gaussian elimination, be-

cause Gaussian elimination puts zeros below the pivots while leaving the pivots (=
1 here) unchanged..

(b) In part (a), we said that doing Gaussian elimination to L gives I—that is,
EL = I where E is the product of the elimination matrices (multiplying on the left
since these are row operations). But EL = I means that E = L−1. Hence, doing

the same elimination steps to I gives EI = E = L−1 =

 1 0 0
−l21 1 0

l21l32 − l31 −l32 1

.

[Note to grader: the student need not compute L−1 explicitly as was done here.

(c) If we do the same elimination steps to A = LU , this corresponds to multiply-
ing A on the left by the elimination matrices E, so we get EA = ELU = (EL)U = U ,
using the fact that EL = I from (a). Equivalently, from (b), E = L−1 so we get
L−1A = L−1LU = U .

REMARK: More generally, we applying the same elimination steps to a matrix
A, we will get EA = L−1A.

Problem 3: Without computing A or A−1 or A−2 or A2 explicitly, compute A−1x+
A−2y, where you are given the following LU factorization A = LU :

L =

1 0 0
1 1 0
0 1 1

 , U =

1 0 1
0 1 1
0 0 1

 , x =

1
0
1

 , y =

−1
1
1

 .

(Solve a sequence of triangular systems to get your answer at the end.)
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Solution (10 points)
The principle of doing this problem is that computing A−1x is equivalent to

solving the linear system Av = x. The decomposition A = LU helps us to reduce
to the triangular system case. Indeed, we first solve the linear system Lv = x and
then the system Uw = v.

To make the computation easier, write A−1x + A−2y as A−1(x + A−1y).
First, solving Lv = y gives v1 = y1 = −1, v2 = y2−v1 = 2, and v3 = y3−v2 = −1.

Then, solving Uw = v gives w3 = −1, w2 = v2 −w3 = 3, and w1 = v1 −w3 = 0. So,

A−1y =

 0
3
−1

 , and x + A−1y =

1
3
0

 .

Now, we solve Lu = x+A−1y and get u1 = 1, u2 = 3−u1 = 2, u3 = 0−u2 = −2.
Finally, we solve Uz = u to get z3 = −2, z2 = 2 − z3 = 4, and z1 = 1 − z3 = 3.
Hence,

A−1x + A−2y =

 3
4
−2

 .

REMARK: When solving a triangular system, if it is upper-triangular, we solve
from the bottom to the top; if it is lower-triangular, we solve from the top to the
bottom.

Problem 4: Normally, we eliminate downwards to produce an upper-triangular
matrix U from a matrix A; suppose we eliminate upwards instead to convert A into
lower -triangular form. (That is, use the last row to produce zeros above the last
pivot, the second-to-last row to produce zeros above the second-to-last pivot, and so
on.) Do this for the following matrix A, and by doing so find the factors A = UL.

A =

5 3 1
3 3 1
1 1 1



Solution (10 points)
The upwards Gaussian elimination is as follows:5 3 1

3 3 1
1 1 1

 ;

4 2 0
2 2 0
1 1 1

 ;

2 0 0
2 2 0
1 1 1


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The row operations we used are subtracting the third row from the first and
the second, and then subtracting the second row from the first. To sum up this, we
have,

U =

1 0 1
0 1 1
0 0 1

 ·
1 1 0

0 1 0
0 0 1

 =

1 1 1
0 1 1
0 0 1

 .

L =

2 0 0
2 2 0
1 1 1

 .

REMARK: The corresponding U and L in UL decomposition are typically dif-
ferent from the ones obtained in the LU decomposition.

Problem 5:

(a) Write down a permutation matrix P that reverses the order of the rows of a
3× 3 matrix. Check that P 2 = I.

(b) Given a lower-triangular matrix L, show how you can multiply (possibly mul-
tiple times) by P to get an upper-triangular matrix.

(c) Multiply this P on both the left and the right of the matrix A from the previous
problem to obtain PAP .

(d) Show how to use your factorization A = UL from the previous problem to
get an LU factorization PAP = L′U ′ where L′ and U ′ are lower- and upper-
triangular matrices, respectively. That is, show how to get L′ and U ′ from
your answers U and L of the previous problem merely by permutations, with
no additional calculation (you do not need to re-do the elimination process for
PAP ). Hint: you can freely insert a factor of P 2 = I where ever you want.

Solution (20 points = 5+5+5+5)

(a) P =

0 0 1
0 1 0
1 0 0

. P · P = I because multiplying P on the left of P is to

exchange the first and the third rows of P , which gives the identity matrix.
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(b) Let L =

l11 0 0
l21 l22 0
l31 l32 l33

. First applying P on the left, we exchange the first

and the third rows of L, i.e., PL =

l31 l32 l33

l21 l22 0
l11 0 0

 . Then, applying P on the right of

PL, we exchange the first and the third columns of PL, i.e., PLP =

l33 l32 l31

0 l22 l21

0 0 l11

 .

(c)

PAP = P

5 3 1
3 3 1
1 1 1

P =

1 1 1
3 3 1
5 3 1

P =

1 1 1
1 3 3
1 3 5

 .

(d) PAP = PULP = PUP 2LP = (PUP )(PLP ). As we discussed in (b),
for a lower-triangular matrix L, PLP is upper-triangular. For the same reason,
given a upper-triangular matrix U , PUP becomes lower-triangular. Hence, setting
L′ = PUP and U ′ = PLP , we have obtained an LU decomposition of PAP by
PAP = L′U ′.

REMARK: The phenomenon in (d) holds for n × n matrices, with P replaced
by the matrix with 1 on the anti-diagonal entries and 0 elsewhere.

Problem 6: Come up with 2×2 matrices A and B, and check by direct calculation
that (AB)T = BTAT 6= ATBT.

Solution (10 points)

For example, A =

(
1 5
2 3

)
, B =

(
1 2
3 4

)
.

(AB)T =

((
1 5
2 3

)(
1 2
3 4

))T

=

(
16 22
11 16

)T

=

(
16 11
22 16

)
,

BTAT =

(
1 3
2 4

)(
1 2
5 3

)
=

(
16 11
22 16

)
,

ATBT =

(
1 2
5 3

)(
1 3
2 4

)
=

(
9 11
11 27

)
.
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Problem 7: Express ((AB)−1)T in terms of (A−1)T and (B−1)T.

Solution (5 points)
Since AB(AB)−1 = I, (AB)−1 = B−1A−1. Hence, ((AB)−1)T = (B−1A−1)T =

(A−1)T(B−1)T.

Problem 8: If L is a lower-triangular matrix, then (L−1)T is triangular.

Solution (5 points)
(L−1)T is an upper-triangular matrix. Indeed, L−1 is lower-triangular because L

is. The transpose carries the upper-triangular matrices to the lower-triangular ones
and vice versa.

Problem 9: Find a 4× 4 permutation matrix P with P 4 6= I.

Solution (5 points)
For example, we take the permutation matrix to be the one rotating the first

three rows, in other words, P =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

. Then obviously, P 3 = I and hence

P 4 = P 6= I.

REMARK: It can be shown that if m is the least common multiplier of 1, 2, . . . , n,
then for any permutation matrix P , Pm = I. So, in our case n = 4 and m = 12.

Problem 10: Suppose R is m× n and A = AT is a symmetric m×m matrix.

(a) Using RT, A, and R, form a new symmetric matrix (transpose it to check that
it is symmetric). How many rows and columns does your matrix have?

(b) Show that B = RTR has no negative numbers on its diagonal. (Hint: first,
explain what vector x gives the i-th diagonal element of B by bii = xTBx.
Then explain why bii ≥ 0 for B = RTR.)

Solution (15 points = 5+10)
(a) RTAR is an n×n matrix. It is symmetric because (RTAR)T = RTAT(RT)T =

RTAR.
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CAUTION: RART is wrong, because we cannot multiply an m×n matrix from
the left to an m×m matrix.

Also, we can form symmetric matrices RTR (m×m) and RRT (n× n) without
using A. Or, we can use A multiple times by considering RTA2R, RTA3R and so on.
These are all symmetric n × n matrices. (Again, be careful that RA2RT, RA3RT

and so on are not eligible either.)

(b) There are two (not very different) ways of proving this.
Method 1: The hint suggests a very conceptual way to understand this. If

we take xi to be the vector with 1 on the i-th component and 0 elsewhere, then
bii = xT

i Bxi picks up exactly the i-th element on the diagonal. Thus,

bii = xT
i Bxi = xT

i RTRxi = (Rxi)
TRxi = ‖

−−→
Rxi‖2 ≥ 0.

Method 2: We can, alternatively, compute directly.

Denote R =


r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

. Then

B = RTR =


r11 r21 · · · rm1

r12 r22 · · · rm2
...

...
. . .

...
r1n r2n · · · rnm




r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn


Hence, For the i-th element bii on the diagonal, we have

bii =
n∑

j=1

rjirji =
n∑

j=1

r2
ji ≥ 0.

Problem 11: Suppose QT = Q−1 for some matrix Q, so that QTQ = I. Show
that the columns of Q are orthogonal unit vectors, i.e. each column qi has length
‖qi‖2 = qT

i qi = 1, and qT
i qj = 0 for two different columns i 6= j.

Solution (10 points)
First of all, the matrix Q is a square matrix, say n × n. Again, we give two

proofs, based on the two methods from the previous problem, respectively.
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Method 1: This is more conceptual than the second proof.
Let xi denote the vector with 1 on the i-th component and 0 elsewhere. Then

i-th column of Q is qi = Qxi. Hence,

qT
i qj = xT

i QTQxj = xT
i Ixj = xT

i xj =

{
1 if i = j
0 otherwise.

Method 2: We may also choose to compute directly, which is none other than
writing everything explicit from the previous proof.

Denote Q =


q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
. . .

...
qn1 qn2 · · · qnn

. Then the i-th column is qi =


qi1

qi2
...

qin

. Note

that

QTQ =


q11 q21 · · · qn1

q12 q22 · · · qn2
...

...
. . .

...
q1n q2n · · · qnn




q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
. . .

...
qn1 qn2 · · · qnn

 =


∑

a q1aqa1

∑
a q2aqa1 · · ·

∑
a qnaqa1∑

j q1aqa2

∑
a q2aqa2 · · ·

∑
a qnaqa2

...
...

. . .
...∑

a q1aqan

∑
a q2aqan · · ·

∑
a qnaqan


Hence, ∑

a

qiaqaj =

{
1 if i = j
0 otherwise.

Hence,

qT
i qj =

(
qi1 qi2 · · · qin

)


qj1

qj2
...

qjn

 =
∑

a

qiaqaj =

{
1 if i = j
0 otherwise.

Problem 12: Say whether the following sets of matrices form a subspace of the set
of all matrices (under ordinary matrix addition and multiplication by scalars); give
a counter-example (something that violates the rules for subspaces) for cases that
are not a subspace.

(a) invertible matrices

(b) singular matrices

8



(c) symmetric matrices (A = AT)

(d) anti-symmetric matrices (A = −AT)

(e) unsymmetric matrices (A 6= AT)

Solution (25 points = 5+5+5+5+5)

(a) No. For example, A =

(
1 0
0 1

)
and B =

(
−1 0
0 1

)
are invertible matrices

but A+B =

(
0 0
0 2

)
is not invertible. Actually, more importantly, the zero matrix is

not invertible but any linear subspace should contain the zero matrix. So invertible
matrices do not form a linear subspace.

(b) No. For example, A =

(
0 0
0 1

)
and B =

(
1 0
0 0

)
are singular matrices but

A + B = I is not singular.

(c) Yes. This is because the multiples of symmetric matrices and sums of
symmetric matrices are still symmetric. In other words, if A and B are sym-
metric matrices, (aA)T = aAT = aA ⇒ aA is symmetric for a ∈ R, and
(A + B)T = AT + BT = A + B ⇒ A + B is symmetric.

(d) Yes. The argument is similar to (c) but with a negative sign everywhere
when taking away the transpose symbol.

(e) No, because the zero matrix is not unsymmetric.

Problem 13: Find a square matrix A where C(A2) (the column space of A2) is
smaller than C(A).

Solution (5 points)

For example, A =

(
0 1
0 0

)
. Then A2 =

(
0 0
0 0

)
. Thus, C(A) is generated by

vector

(
1
0

)
, which is of one dimensional, but C(A2) is the zero space. Hence, C(A2)

is strictly smaller than C(A).

Problem 14: An n×n matrix A has C(A) = Rn if and only if A is a/an
matrix.
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Solution (5 points)
invertible.
C(A) = Rn if and only if for all vector b ∈ Rn, we can find at least one solution

v for Av = b. This is in turn equivalent to A being an invertible matrix.
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